L3 - Algèbre 2 2011–2012 : TD 12

Groupe orthogonal et quadriques

Exercice 1. (Échauffement)

- 1. Soit $A \in M_n(\mathbf{R})$ une matrice antisymétrique. Montrer qu'il existe S_1 et $S_2 \in M_n(\mathbf{R})$ symétriques telles que $A = [S_1, S_2]$.
- 2. Montrer que pour tout $n \geq 1$, le groupe $SO_n(\mathbf{R})$ (muni de la topologie induite par la topologie d'espace vectoriel normé de $M_n(\mathbf{R})$) est connexe par arcs.
- 3. Soit n et m deux entiers ≥ 1 différents. Montrer que les groupes $O_n(\mathbf{R})$ et $O_m(\mathbf{R})$ ne sont pas isomorphes. (*Indication*: on pourra dénombrer les classes de conjugaison d'éléments d'ordre 2.)

Exercice 2. (Exponentielle)

Montrer que l'exponentielle induit une application surjective

$$\exp: \mathfrak{so}_n(\mathbf{R}) \to \mathrm{SO}_n(\mathbf{R}),$$

où $\mathfrak{so}_n(\mathbf{R})$ désigne l'ensemble des matrices antisymétriques dans $M_n(\mathbf{R})$.

Exercice 3. (Morphismes vers $\mathbb{Z}/2\mathbb{Z}$)

Soit $n \geq 2$.

- 1. Déterminer les morphismes $O_n(\mathbf{R}) \to \mathbf{Z}/2\mathbf{Z}$.
- 2. Si $A \subset \mathbb{R}^n$ est un sous-espace vectoriel de dimension n-2, on appelle retournement d'axe A l'unique endomorphisme de \mathbb{R}^n coïncidant avec id sur A et avec id sur l'orthogonal de A (pour le produit scalaire canonique).

Montrer que si $n \geq 3$, les retournements engendrent $SO_n(\mathbf{R})$.

3. Déterminer les morphismes $SO_n(\mathbf{R}) \to \mathbf{Z}/2\mathbf{Z}$.

Exercice 4. (Structure de $SO_n(\mathbf{R})$)

A. Simplicité de $SO_3(\mathbf{R})$.

- 1. Déterminer le centre de $O_n(\mathbf{R})$ et celui de $SO_n(\mathbf{R})$. On note $PSO_n(\mathbf{R})$ le quotient de $SO_n(\mathbf{R})$ par son centre.
- 2. Soit $N \triangleleft SO_3(\mathbf{R})$ un sous-groupe distingué de $SO_3(\mathbf{R})$ non réduit à {id}. Démontrer qu'il contient un élément u tel que $-1 \le \operatorname{tr} u < 3$.
- 3. En considérant les commutateurs de u et d'un élément de $SO_3(\mathbf{R})$, montrer qu'il existe $t_0 < 3$ tel que pour tout $t \in [t_0, 3]$, N contienne un élément de trace t.
- 4. En déduire que N contient un élément d'ordre (fini) pair, puis que N contient un retournement.
- 5. Conclure.

B. Simplicité de $PSO_n(\mathbf{R})$, $n \geq 5$.

Dans la suite de l'exercice, $n \geq 5$.

- 1. Pour tout sous-espace vectoriel $F \subset \mathbf{R}^n$, on considère $G_F = \{u \in SO_n(\mathbf{R}) \mid u_{|F} = id_F\}$. À quoi est isomorphe G_F ?
- 2. Soit $u \in SO_n(\mathbf{R})$ différent de \pm id. Montrer qu'il existe un élément $v \in SO_n(\mathbf{R})$ tel que le commutateur c = [u, v] soit différent de \pm id mais fixe un vecteur unitaire.
- 3. Démontrer qu'il existe $w \in SO_n(\mathbf{R})$ tel que le commutateur [c, w] soit différent de \pm id mais fixe un sous-espace vectoriel de codimension ≤ 2 .
- 4. En déduire la liste des sous-groupes distingués de $SO_n(\mathbf{R})$ et la simplicité de $PSO_n(\mathbf{R})$.

Remarque. Le groupe $PSO_4(\mathbf{R})$ n'est pas simple : il est isomorphe à $SO_3(\mathbf{R}) \times SO_3(\mathbf{R})$.

Exercice 5. (Classes de similitude dans $M_2(\mathbf{R})$)

Soit $M \in M_2(\mathbf{R})$ une matrice ayant deux valeurs propres complexes différentes. Montrer que la classe de similitude de M est une quadrique affine d'un hyperplan affine de $M_2(\mathbf{R})$, que l'on déterminera suivant la diagonalisabilité de M sur \mathbf{R} .