Calcul différentiel sur les sous-variétés (suite)

Exercice 1.— Droites du tore.

On identifie le tore $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ à la sous-variété $S^1 \times S^1$ de $\mathbb{C}^2 \simeq \mathbb{R}^4$ via l'application bijective $(u \mod 1, v \mod 1) \mapsto (e^{2i\pi u}, e^{2i\pi v})$. On appelle droite de pente α l'application

$$\Delta_{\alpha}: \begin{array}{ccc} \mathbb{R} & \to & \mathrm{T}^2 \\ t & \mapsto & (t, \alpha t) \end{array}.$$

- (a) Donner une condition nécessaire et suffisante pour que Δ_{α} soit injective. Montrer que dans le cas contraire, elle définit par passage au quotient une application lisse $\overline{\Delta}_{\alpha}$: $\Gamma \to T^2$, où Γ est un cercle.
- (b) Montrer que $\underline{\Delta}_{\alpha}$ est une immersion. Démontrer que dans le cas évoqué plus haut, l'application $\overline{\Delta}_{\alpha}:\Gamma\to T^2$ est également une immersion. En déduire que $\overline{\Delta}_{\alpha}$ est un plongement.
- (c) Démontrer que Δ_{α} n'est pas un plongement.

Exercice 2.— Soit $f: V \to \mathbb{R}^p$ une application différentiable définie sur une sous-variété V de dimension d de \mathbb{R}^n . On suppose que le rang de f est constant $r = \operatorname{rg}(d_x f: T_x V \to \mathbb{R}^p)$. Montrer que les niveaux $f^{-1}\{p\}$ sont des sous-variétés de \mathbb{R}^n de dimension d-r. En guise d'application, redémontrer que $\operatorname{SU}(n)$ est une sous-variété de $\operatorname{GL}(n,\mathbb{C})$ et déterminer sa dimension.

Exercice 3.— Stabilité des points réguliers et de Morse

Soit Λ un espace vectoriel de dimension finie et $f: \Lambda \times \mathbb{R}^n \to \mathbb{R}$ lisse. On pourra penser à f comme une famille de fonctions lisses en posant, pour $\lambda \in \Lambda$, $f_{\lambda}(x) = f(\lambda, x)$.

- (a) On suppose que 0 n'est pas un point critique de f_0 . Montrer que pour λ suffisamment petit, f_{λ} n'a pas de point critique proche de 0.
- (b) On suppose que f_0 a en 0 un point critique de Morse. Montrer que pour λ assez petit, f_{λ} a au voisinage de 0 un unique point critique $a(\lambda)$. Montrer que ce point critique est de Morse, et que la fonction $\lambda \mapsto a(\lambda)$ est lisse.
- (c) Peut-on généraliser ce résultat quand 0 est un point critique dégénéré de f_0 ? Quand il est isolé?

Exercice 4.— Recherche de points critiques

Déterminer les points critiques de tr : $SL(n, \mathbb{R}) \to \mathbb{R}$.