TD de révision : vrai ou faux?

Déterminer si chacune des affirmations suivantes est vraie ou fausse. On justifiera chaque réponse par une preuve ou un contre-exemple.

- 1. L'intersection de deux tribus est une tribu. L'union de deux tribus est une tribu.
- 2. $\mathscr{P}(X)$ est la seule tribu sur un ensemble X fini qui contienne les singletons. Même affirmation pour X dénombrable, X non dénombrable.
- 3. Soit (E, \mathscr{A}) un espace mesurable et $f : E \to \mathbb{R}$ une fonction. Alors f est mesurable si et seulement si $\forall r \in \mathbb{Q}, \left\{ x \in E \,\middle|\, f(x) > r \right\} \in \mathscr{A}$.
- 4. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction admettant une primitive. Alors $f: (\mathbb{R}, \mathscr{B}(\mathbb{R})) \to (\mathbb{R}, \mathscr{B}(\mathbb{R}))$ est mesurable.
- 5. Soit $g:(\mathbb{E},\mathscr{A})\to(\mathbb{R},\mathscr{B}(\mathbb{R}))$ une fonction mesurable et $f:\mathbb{R}\to\mathbb{R}$ continue. Alors $f\circ g$ est mesurable.
- 6. Soit μ une mesure de probabilité sans atome sur [0,1] (*i.e.* $\forall x \in \mathbb{R}_+, \mu(\{x\}) = 0$) et $n \in \mathbb{N}^*$. Il existe une partition $[0,1] = A_1 \sqcup \cdots \sqcup A_n$ telle que $\mu(A_i) = 1/n$.
- 7. Soit $f:(X, \mathscr{A}) \to (Y, \mathscr{B})$ une application mesurable, μ une mesure sur (X, \mathscr{A}) et $\nu = f_*(\mu)$. Alors $\mu(X) = \nu(Y)$.
- 8. Réciproquement, soit (X, \mathcal{A}, μ) et (Y, \mathcal{B}, ν) deux espaces mesurés tels que $\mu(X) = \nu(Y)$. Alors il existe $f: (X, \mathcal{A}) \to (Y, \mathcal{B})$ mesurable telle que $\nu = f_*(\mu)$.
- 9. Soit $(X, \mathscr{A}, \mu) = (\mathbb{N}, \mathscr{P}(\mathbb{N}), \text{card})$. Alors toute application mesurable $f : (X, \mathscr{A}) \to (X, \mathscr{A})$ telle que $f_*(\mu) = \mu$ est bijective. Même affirmation pour $([0, 1], \mathscr{B}([0, 1]), \lambda)$.
- 10. Soit $f : \mathcal{E} \to \mathbb{R}$ une fonction mesurable sur un espace mesuré (\mathcal{E}, μ) . Pour tout $\varepsilon > 0$, il existe $\mathcal{N} \in \mathbb{N}$ tel que $\lambda \left(\left\{ x \in \mathcal{E} \, \middle| \, |f(x)| > \mathcal{N} \right\} \right) < \varepsilon$. Même question si $\mu(\mathcal{E}) < +\infty$.
- 11. Soit $f : \mathcal{E} \to \mathbb{R}$ une fonction intégrable sur un espace mesuré (\mathcal{E}, μ) . Pour tout $\varepsilon > 0$, il existe $\mathcal{N} \in \mathbb{N}$ tel que $\lambda \left(\left\{ x \in \mathcal{E} \, \middle| \, |f(x)| > \mathcal{N} \right\} \right) < \varepsilon$. Même question si $\mu(\mathcal{E}) < +\infty$.
- 12. Soit (E, μ) un espace mesuré et $(f_n : E \to (\mathbb{R}_+, \mathscr{B}(\mathbb{R}_+)))_{n \in \mathbb{N}}$ une suite de fonctions mesurables. Alors $\int_E \liminf_{n \to \infty} f_n d\mu \ge \liminf_{n \to \infty} \int_E f_n d\mu$.
- 13. Sous les mêmes hypothèses, $\int_{\mathcal{E}} \liminf_{n \to \infty} f_n d\mu \leq \liminf_{n \to \infty} \int_{\mathcal{E}} f_n d\mu$.
- 14. Sous les mêmes hypothèses, $\int_{\mathbb{R}} \limsup_{n \to \infty} f_n d\mu \ge \limsup_{n \to \infty} \int_{\mathbb{R}} f_n d\mu$.
- 15. Sous les mêmes hypothèses, $\int_{\mathcal{E}} \limsup_{n \to \infty} f_n d\mu \le \limsup_{n \to \infty} \int_{\mathcal{E}} f_n d\mu$.
- 16. Soit (E, μ) un espace mesuré et $(f_n : E \to (\mathbb{R}_+, \mathscr{B}(\mathbb{R}_+)))_{n \in \mathbb{N}}$ une suite de fonctions mesurables convergeant en décroissant vers $f : E \to \mathbb{R}$. Alors $\int_E f_n d\mu \xrightarrow[n \to \infty]{} \int_E f$. Même question si l'on suppose f_1 intégrable.

- 17. Soit (E, μ) un espace mesuré et $(f_n : E \to (\mathbb{R}_+, \mathscr{B}(\mathbb{R}_+)))_{n \in \mathbb{N}}$ une suite de fonctions mesurables convergeant vers une fonction $f : E \to \mathbb{R}$ par valeurs inférieures. Alors $\int_E f_n d\mu \xrightarrow[n \to \infty]{} \int_E f.$
- 18. Un ensemble mesurable $A \subset \mathbb{R}^n$ est borné si et seulement s'il est de mesure de Lebesgue finie.
- 19. Un ouvert $O \subset \mathbb{R}^n$ non vide est de mesure de Lebesgue strictement positive.
- 20. Pour tout $\varepsilon > 0$, il existe un ouvert dense $O \subset \mathbb{R}^n$ de mesure de Lebesgue au plus ε .
- 21. Un compact $K \subset \mathbb{R}^n$ est de mesure de Lebesgue finie.
- 22. Un compact $K \subset \mathbb{R}^n$ est d'intérieur vide si et seulement s'il est de mesure nulle.
- 23. Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une fonction continue. Si $\mathbb{N} \subset \mathbb{R}^n$ est négligeable, alors $f[\mathbb{N}]$ aussi. Même affirmation pour f continûment différentiable.
- 24. Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une fonction continue. Si $\mathbb{N} \subset \mathbb{R}^n$ est négligeable, alors $f^{-1}[\mathbb{N}]$ aussi. Même affirmation pour f continûment différentiable.
- 25. Il existe des ensembles $A \subset \mathbb{R}$ non mesurables tels que $\lambda^*(A) = 0$.
- 26. Pour tout $\varepsilon > 0$, il existe des ensembles $A \subset \mathbb{R}$ non mesurables tels que $\lambda^*(A) \leq \varepsilon$.
- 27. Soit $E \subset \mathbb{R}$ un ensemble mesurable non négligeable. Alors E contient un ensemble non mesurable.
- 28. Soit $E \subset \mathbb{R}$ un ensemble négligeable et $(\varepsilon_n)_{n \in \mathbb{N}^*}$ une suite de nombres strictement positifs. On peut recouvrir E par des intervalles $(I_n)_{n \in \mathbb{N}^*}$ tels que $\forall n \in \mathbb{N}^*, \lambda(I_n) < \varepsilon_n$.
- 29. Soit $(E_n)_{n\in\mathbb{N}}$ une suite de boréliens de [0,1]. On suppose qu'il existe C>0 tel que $\forall n\in\mathbb{N}, \lambda(E_n)\geq C$. Alors il existe une sous-famille infinie des E_n dont l'intersection est de mesure non nulle.
- 30. Soit $(E_n)_{n\in\mathbb{N}}$ une suite de boréliens de [0,1]. On suppose qu'il existe C>0 tel que $\forall n\in\mathbb{N}, \lambda(E_n)\geq C$. Alors il existe une sous-famille infinie des E_n dont l'intersection est non vide.
- 31. Soit μ une mesure sur ([0,1], $\mathcal{B}([0,1])$) telle que

$$\forall A \in \mathscr{B}([0,1]), \lambda(A) = 1/2 \Rightarrow \mu(A) = 1/2.$$

Alors $\mu = \lambda$.

- 32. Soit (X, μ) un espace mesuré fini. Alors toute suite bornée dans $L^2(X)$ admet une sous-suite convergente.
- 33. $L^1([0,1]) \subset L^2([0,1])$.
- 34. Si $1 \le p < q$, alors $L^q([0,1]) \subset L^p([0,1])$.
- 35. Si une suite converge dans $L^p([0,1])$ alors elle converge presque partout.
- 36. Soit $1 < p, q < \infty$ deux exposants conjugués, f dans $L^p([0,1])$ et g dans $L^q([0,1])$ respectivement. Alors $||fg||_1 = ||f||_p ||g||_q$ si et seulement s'il existe $(\alpha, \beta) \neq (0, 0)$ tel que $\alpha |f| = \beta |g|$ presque partout.