TD 0 : dénombrabilité

Exercice 1.— Dénombrabilité : vrai ou faux

Les ensembles suivants sont-ils dénombrables?

- 1. l'ensemble $\mathscr{P}_f(\mathbb{N})$ des parties finies de \mathbb{N} ; l'ensemble $\mathscr{P}_{\omega}(\mathbb{N})$ des parties dénombrables de \mathbb{N} ; l'ensemble $\mathscr{P}(\mathbb{N})$ des parties de \mathbb{N} ;
- 2. l'ensemble $\mathbb{N}^{\mathbb{N}}$ des suites entières; l'ensemble $A \subset \mathbb{N}^{\mathbb{N}}$ des suites ne prenant qu'un nombre fini de valeurs, l'ensemble $B \subset \mathbb{N}^{\mathbb{N}}$ des suites stationnaires;
- 3. l'ensemble $\mathfrak{S}(\mathbb{N})$ des bijections de \mathbb{N} dans lui-même; l'ensemble $\mathfrak{S}_0(\mathbb{N})$ des bijections de \mathbb{N} dans lui-même coïncidant avec l'identité en dehors d'un ensemble fini.

Exercice 2.— Famille sommable

Soit I un ensemble et $(a_i)_{i\in I}$ une famille de réels strictement positifs. On dit que $(a_i)_{i\in I}$ est sommable si l'ensemble

$$\left\{ \sum_{j \in \mathcal{J}} a_j \, \middle| \, \mathcal{J} \subset \mathcal{I} \text{ fini} \right\}$$

admet un supremum. Montrer que si $(a_i)_{i\in I}$ est sommable, I est dénombrable.

Exercice 3.— Boîte à outils topologique

Dans cet exercice, \mathbb{R}^n est muni de son unique topologie d'espace vectoriel normé.

- 1. Soit $(U_i)_{i\in I}$ une famille d'ouverts non vides de \mathbb{R}^n deux à deux disjoints. Montrer que I est dénombrable.
- 2. Montrer que tout ouvert de \mathbb{R}^n est une union dénombrable de boules. Montrer qu'on peut même se limiter aux boules *rationnelles* (c'est-à-dire dont le rayon est un rationnel strictement positif et le centre dans \mathbb{Q}^n).
- 3. On dit qu'un ensemble $A \subset \mathbb{R}^n$ est un F_{σ} si c'est une union dénombrable de fermés et un G_{δ} si 1 c'est une intersection dénombrable d'ouverts. Montrer que tout fermé est un G_{δ} et que tout ouvert est un F_{σ} mais que les réciproques de ces deux propriétés sont fausses.
- 4. Montrer que tout ouvert de \mathbb{R}^n est σ -compact, c'est-à-dire qu'il est une union dénombrable de compacts.
- 5. Montrer que l'espace $(C^0([0,1]), \|\cdot\|_{\infty})$ est *séparable*, c'est-à-dire qu'il contient une partie dénombrable dense.
- 6. Trouver un exemple d'espace vectoriel normé non séparable.

^{1.} F pour « fermé » et σ pour « somme » ; G pour l'allemand « Gebiet » et δ pour « Durchschnitt »

Exercice 4.— Points de discontinuité

- 1. Montrer que l'ensemble des points de discontinuité d'une fonction croissante $f: \mathbb{R} \to \mathbb{R}$ est dénombrable. Donner un contre-exemple si f n'est plus supposée croissante.
- 2. Montrer que l'ensemble des points de non-dérivabilité d'une fonction convexe $f: \mathbb{R} \to \mathbb{R}$ est dénombrable.
- 3. On dit que $f: \mathbb{R} \to \mathbb{R}$ est $r\acute{e}gl\acute{e}e$ si, sur tout segment, elle est limite uniforme de fonctions en escalier. Montrer que si f est réglée alors elle admet des limites à gauche et à droite en tout point puis que l'ensemble des points de discontinuité d'une fonction réglée $f: \mathbb{R} \to \mathbb{R}$ est dénombrable.