Surfaces de Riemann 2011–2012

TD 5: Uniformisation et conséquences

Exercice 1. Uniformisation des surfaces de Riemann quelconques.

Démontrer la forme suivante du théorème d'uniformisation.

Soit X une surface de Riemann. Il existe un unique modèle $\widetilde{X} \in \{\overline{\mathbb{C}}, \mathbb{C}, \mathbb{D}\}$ et un groupe $\Gamma \leq \operatorname{Aut}(X)$ opérant proprement et librement sur \widetilde{X} tels que X soit biholomorphe au quotient \widetilde{X}/Γ .

Exercice 2. Surfaces de Riemann revêtues par $\overline{\mathbb{C}}$.

- 1. Montrer que toute surface de Riemann dont le revêtement universel est biholomorphe à $\overline{\mathbb{C}}$ est biholomorphe à $\overline{\mathbb{C}}$.
- 2. Soit X une surface de Riemann telle qu'il existe une application holomorphe non constante de $\overline{\mathbb{C}}$ vers X. Montrer que X est biholomorphe à $\overline{\mathbb{C}}$.

Exercice 3. Surfaces de Riemann revêtues par \mathbb{C} .

Soit $\Gamma \subset \operatorname{Aut}(\mathbb{C})$ un sous-groupe opérant proprement et librement sur \mathbb{C} .

- 1. Montrer que Γ est un groupe de translations.
- 2. Démontrer que Γ est discret.
- 3. On suppose que Γ contient deux éléments non nuls λ et μ tels que $\lambda/\mu \notin \mathbb{R}$. Montrer qu'alors Γ est de la forme $\mathbb{Z}\alpha_1 \oplus \mathbb{Z}\alpha_2$ avec $\alpha_1/\alpha_2 \notin \mathbb{R}$.
- 4. Conclure qu'en général, Γ est soit de cette forme, soit cyclique, soit trivial.
- 5. Déterminer à biholomorphisme près les surfaces de Riemann revêtues par \mathbb{C} .

Exercice 4. Un exemple.

Soit $0 \le r < R \le \infty$. Exhiber le revêtement universel de $C(r,R) = \{z \in \mathbb{C} \mid r < |z| < R\}$.

Exercice 5. Petit théorème de Picard.

- 1. Montrer qu'un plan privé de deux points n'est pas homéomorphe à une sphère, un tore, un plan ou un cylindre. En déduire que \mathbb{C} privé de deux points est revêtu par \mathbb{D} .
- 2. Démontrer le *petit théorème de Picard* : une fonction entière $f \in \mathcal{O}(\mathbb{C})$ telle que $\mathbb{C} \setminus f(\mathbb{C})$ a au moins deux éléments est constante.

Exercice 6. Surfaces de Riemann contenant les modèles. Quelles sont les surfaces de Riemann admettant un ouvert biholomorphe à $\overline{\mathbb{C}}$? à \mathbb{C} ? à \mathbb{D} ?

Exercice 7. Métrique de Poincaré.

1. Montrer qu'il existe une unique métrique riemannienne sur \mathbb{D} , à multiplication près par un scalaire, qui soit invariante sous l'action de $\operatorname{Aut}(\mathbb{D})$. C'est (une des définitions de) la *métrique de Poincaré*, ou *métrique hyperbolique*. Quel est le groupe des isométries de cette métrique?

- 2. Exprimer la distance pour cette métrique riemannienne entre deux points de $\mathbb D$ (on pourra commencer par le cas où l'un d'eux est 0). Démontrer que $\operatorname{Aut}(\mathbb D)$ agit transitivement sur les couples de points à même distance.
- 3. Démontrer que les fonctions holomorphes $f: \mathbb{D} \to \mathbb{D}$ sont 1-lipschitziennes pour cette distance (*lemme de Schwarz-Ahlfors-Pick*).
- 4. Démontrer qu'il n'existe pas de métrique riemannienne invariante par Aut(X) dans les cas $X = \mathbb{C}, X = \overline{\mathbb{C}}$.

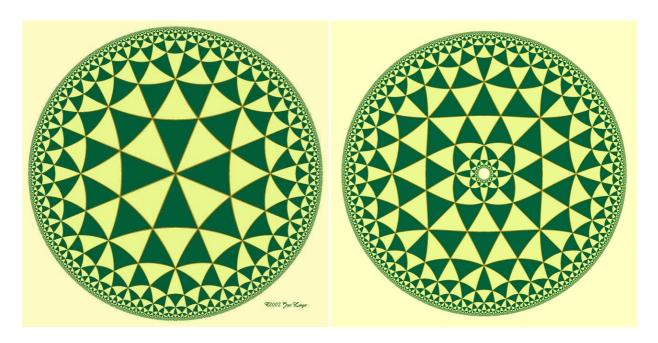


Figure 1 - Dessins dus à Jos Leys, http://www.josleys.com