Surfaces de Riemann 2011–2012

TD 8: Théorème de Riemann-Roch

Exercice 1. Quelques conséquences du théorème de Riemann-Roch.

Soit X une surface de Riemann compacte de genre g et $D \in Div(X)$.

- 1. Montrer les propriétés suivantes :
 - (i) $\deg D < 0 \Longrightarrow \ell(D) = 0$;
 - (ii) $-1 \le \deg D \le g 1 \Longrightarrow 0 \le \ell(D) \le 1 + \deg D$;
 - (iii) $g-1 \le \deg D \le 2g-1 \Longrightarrow 1-g+\deg D \le \ell(D) \le g$;
 - (iv) $\deg D \ge 2g 1 \Longrightarrow \ell(D) = 1 g + \deg D$.
- 2. En déduire qu'il existe une application holomorphe $f: X \to \overline{\mathbb{C}}$ de degré $\leq g+1$.

Exercice 2. Riemann-Roch sur la sphère de Riemann.

- 1. Quel est le groupe de Picard de $\overline{\mathbb{C}}$?
- 2. Soit D un diviseur quelconque sur $\overline{\mathbb{C}}$. Déterminer $\ell(D)$ et vérifier le théorème de Riemann-Roch sur ces exemples.

Exercice 3. Diviseur d'intersection.

Soit $X \subset \mathbb{P}^n(\mathbb{C})$ une courbe complexe lisse. Soit également $G \in \mathbb{C}[x_0, x_1, ..., x_n]$ homogène ne s'annulant pas identiquement sur X. On construit un diviseur div G dont le support est le lieu d'annulation de G sur X de la façon suivante.

- 1. Soit $x \in X$ un point d'annulation de G. Montrer qu'il existe H homogène de même degré que G ne s'annulant pas en x, et que G/H définit une fonction méromorphe sur X ayant un zéro en x. On note n_x l'ordre de cette fonction en ce point.
- 2. Montrer que l'entier $n_x > 0$ ne dépend pas du choix de H. On note div $G = \sum n_x x$ le diviseur d'intersection de G.
- 3. Montrer que si G_1 et G_2 sont deux polynômes homogènes, $div(G_1G_2) = div G_1 + div G_2$.
- 4. Montrer que si G_1 et G_2 sont deux polynômes homogènes de même degré, div G_1 et div G_2 sont linéairement équivalents. Dans le cas du degré 1, on appelle ce diviseur (ou plutôt cette classe de diviseurs) le *diviseur hyperplan* de X.

Exercice 4. Diviseurs très amples.

Soit X une surface de Riemann compacte.

1. Soit D un diviseur sur X. On note |D| son *système linéaire complet*, c'est-à-dire l'ensemble des diviseurs effectifs qui lui sont linéairement équivalents. Montrer que l'application

$$\mathbb{P}(L(D)) \rightarrow |D|$$

$$[f] \mapsto \operatorname{div}(f) + D$$

est une bijection.

- 2. Un point $x \in X$ est un *point base* du système linéaire complet |D| si tous les diviseurs $D' \in |D|$ le contiennent (c'est-à-dire vérifient $D' \ge x$). Montrer que $x \in X$ est un point base de |D| si et seulement si L(D-p) = L(D).
- 3. Soit $f = (f_0, ..., f_n)$ un (n+1)-uplet non nul de fonctions méromorphes sur X. On définit une application

$$\varphi_f : X \to \mathbb{P}^n(\mathbb{C})$$

 $x \mapsto [f_0(x): f_1(x): \cdots : f_n(x)]$

qui est bien définie et holomorphe au voisinage de tout point qui n'est le pôle d'aucun des f_i et qui n'en est pas un zéro commun.

Montrer que φ_f se prolonge en une application holomorphe non constante $X \to \mathbb{P}^n(\mathbb{C})$.

- 4. Dans toute la suite, D sera un diviseur tel que |D| soit sans point base. Montrer que la construction précédente appliquée à une base de L(D) construit une application holomorphe $\varphi_D: X \to \mathbb{P}^n(\mathbb{C})$, où $n = \ell(D) - 1$ est la dimension (projective) de |D|, bien définie modulo l'action de $PGL(n+1,\mathbb{C})$.
- 5. Soit $x \in X$. Montrer qu'il existe une base $f_0, f_1, ..., f_n$ de L(D) telle que $\deg_x f_0 = -D(x)$ et $\forall i \ge 1$, $\deg_x f_i > -D(p)$.
- 6. Soit p et q deux points distincts de X. Alors $\varphi_D(p) = \varphi_D(q)$ si et seulement si

$$L(D-p) = L(D-q)$$
.

Montrer en outre que si L(D-p) = L(D-q), cet espace est également L(D-p-q). En déduire que φ_D est injective si et seulement si, pour tous points p et q de X distincts, on a $\ell(D-p-q) = \ell(D)-2$.

- 7. Supposons maintenant que D soit tel que φ_D soit injective. Soit $x \in X$. Alors l'image de φ_D est une surface de Riemann plongée au voisinage de $\varphi_D(x)$ si et seulement si $L(D-2p) \neq L(D-p)$.
- 8. On a donc montré que $\varphi_D: X \to \mathbb{P}^n(\mathbb{C})$ est un plongement holomorphe si et seulement si pour tous points p et $q \in X$, $\ell(D-p-q)=\ell(D)-2$. On dit alors que le diviseur D est $tr\`es$ ample. 1 Montrer que tout diviseur de degré > 0 sur $\overline{\mathbb{C}}$ est très ample.
- 9. Montrer que si le genre de X est g, tout diviseur de degré $\geq 2g+1$ est très ample.

Exercice 5. Application canonique.

Soit X une surface de Riemann compacte de genre $g \ge 1$.

- 1. Montrer que si $x \in X$, $\ell(x) = 1$.
- 2. En déduire que le système linéaire complet du diviseur canonique $|K_X|$ n'a pas de point base. On note $\varphi_K : X \to \mathbb{P}^{g-1}(\mathbb{C})$ l'application que ce système définit via la construction de l'exercice précédent.
- 3. Montrer que toute surface de Riemann compacte de genre 2 est *hyperelliptique*, c'està-dire qu'elle admet une application holomorphe de degré 2 à valeurs dans $\overline{\mathbb{C}}$.
- 4. Montrer que si la surface de Riemann X n'est pas hyperelliptique, alors le diviseur canonique est très ample.

 $\mathit{Indication}$: on peut traiter les deux dernières questions simultanément en étudiant ce qui se passe quand φ_K n'est pas un plongement.

^{1. &}quot;This terminology is horrible but standard." – Rick Miranda, *Algebraic curves and Riemann surfaces*.