DM 13 : deux théorèmes généraux sur les suites récurrentes

Dans l'exercice et le problème, étant donné une application $f:\mathbb{C}\to\mathbb{C}$ d'un ensemble dans luimême, on pourra noter f^n la composée $f\circ f\circ\cdots\circ f$, avec n occurrences de f (si bien que $f^0=\mathrm{id}_\mathbb{C}$).

Comme le montre une récurrence immédiate, toute suite $(u_n)_{n\in\mathbb{N}}$ vérifiant la relation de récurrence $\forall n\in\mathbb{N}, u_{n+1}=f(u_n)$ se réécrit alors $(u_n)_{n\in\mathbb{N}}=(f^n(u_0))_{n\in\mathbb{N}}.$

Exercice. Théorème du point fixe de Banach (1922).

Dans cet exercice, $f: \mathbb{C} \to \mathbb{C}$ est une *contraction*, c'est-à-dire que l'on peut trouver une constante $k \in [0,1[$ tel que $\forall x,y \in \mathbb{C}, |f(x)-f(y)| \leq k |x-y|.$

On considère alors une suite $u \in \mathbb{C}^{\mathbb{N}}$ vérifiant $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

Le théorème du point fixe de Banach affirme :

- ▶ que f possède un unique point fixe ℓ ;
- $\blacktriangleright \ que \ u_n \xrightarrow[n \to +\infty]{} \ell.$
 - 1. Montrer que f possède au plus un point fixe.
 - 2. (a) Montrer $\forall n \in \mathbb{N}, |u_{n+1} u_n| \leqslant k^n |u_1 u_0|$.
 - $\text{(b) En d\'eduire } \forall p,q \in \mathbb{N}, |u_{p+q}-u_p| \leqslant \frac{k^p}{1-k} \; |u_1-u_0|.$
 - 3. Montrer qu'il existe une extractrice ϕ telle que la suite $(\mathfrak{u}_{\phi(j)})_{j\in\mathbb{N}}$ converge. On notera ℓ sa limite.
 - 4. En réutilisant la question 2b, montrer que l'on a $u_n \xrightarrow[n \to +\infty]{} \ell$.
 - 5. Conclure.

Remarque. Le « vrai » théorème du point fixe de Banach s'applique dans un cadre beaucoup plus général que celui des suites complexes.

Problème. Théorème de Kohlberg-Neyman (1981).

Dans cet exercice, $f: \mathbb{C} \to \mathbb{C}$ est une *semi-contraction*, c'est-à-dire que

$$\forall x, y \in \mathbb{C}, |f(x) - f(y)| \leq |x - y|.$$

On veut montrer l'existence de $\nu\in\mathbb{C}$ tel que, toute suite $\mathfrak{u}\in\mathbb{C}^\mathbb{N}$ vérifiant la relation de récurrence $\forall n\in\mathbb{N}, u_{n+1}=f(u_n)$ vérifie

$$\frac{u_n}{n} \xrightarrow[n \to +\infty]{} \nu$$
.

- 1. Montrer le résultat dans les cas où f est une translation, et dans ceux où f est une rotation.
- 2. On suppose avoir trouvé $v \in \mathbb{C}$ tel que $\frac{f^n(0)}{n} \xrightarrow[n \to +\infty]{} v$. Conclure la démonstration du théorème.
- 3. **Lemme de Fekete.** On considère une suite $(d_n)_{n\in\mathbb{N}}$ à valeurs dans \mathbb{R}_+ sous-additive, c'est-à-dire telle que $\forall p,q\in\mathbb{N}, d_{p+q}\leqslant d_p+d_q$.
 - (a) Montrer que l'ensemble $\left\{\frac{d_n}{n} \,\middle|\, n \in \mathbb{N}^*\right\}$ possède une borne inférieure $\ell \in \mathbb{R}_+$.
 - $\text{(b) Soit } T \in \mathbb{N}^*. \text{ On note } M = \text{max}(d_0, \dots, d_{T-1}). \text{ Montrer } \forall n \geqslant T, \frac{d_n}{n} \leqslant \frac{d_T}{T} + \frac{M}{n}.$
 - (c) Déduire de ce qui précède que $\frac{d_n}{n} \xrightarrow[n \to +\infty]{} \ell$.
- 4. En utilisant le lemme de Fekete, montrer l'existence de $\ell \in \mathbb{R}_+$ tel que $\frac{|f^n(0)|}{n} \xrightarrow[n \to +\infty]{} \ell$.
- 5. On suppose $\ell = 0$. Montrer que $\left(\frac{f^n(0)}{n}\right)_{n \in \mathbb{N}^*}$ converge.

Dans la suite des questions, on suppose toujours $\ell > 0$.

6. Un lemme d'existence de records. Soit $s \in \mathbb{R}^{\mathbb{N}}$ telle que $s_n \xrightarrow[n \to +\infty]{} +\infty$. Montrer

$$\forall N \in \mathbb{N}, \exists n \geqslant N : \forall k \leqslant n, s_k \leqslant s_n.$$

- 7. (a) Soit $\lambda \in]0, \ell[$. En appliquant la question précédente à la suite $(d_n \lambda n)_{n \in \mathbb{N}}$, montrer que, pour tout $N \in \mathbb{N}$, il existe $n \geqslant N$ tel que $\forall j \in [0, n], d_n \geqslant d_{n-j} + \lambda j$.
 - (b) Soit $(\epsilon_k)_{k\in\mathbb{N}}$ une suite d'éléments de $]0,\ell[$ convergeant vers 0. Montrer l'existence d'une extractrice α telle que

$$\forall k \in \mathbb{N}, \forall j \in [\![0,\alpha(k)]\!], d_{\alpha(k)} \geqslant d_{\alpha(k)-j} + (\ell-\epsilon_k)j.$$

- 8. (a) Soit $\omega \in \mathbb{U}$. Montrer $\forall z \in \mathbb{C}$, Ré $(\omega z) \leq |z|$.
 - (b) Soit $z\in\mathbb{C}$. Montrer l'existence de $\omega\in\mathbb{U}$ tel que Ré $(\omega\,z)=-|z|$.

 $\text{Dans la suite, on fixe une suite } (\omega_k)_{k \in \mathbb{N}} \text{ d'\'elements de } \mathbb{U} \text{ tels que } \forall k \in \mathbb{N}, \text{R\'e} \left(\omega_k \, f^{\alpha(k)}(0)\right) = -d_{\alpha(k)}.$

- 9. Soit $k \in \mathbb{N}$ et $j \geqslant \alpha(k)$.
 - (a) Montrer Ré $\left(\omega_k f^j(0)\right) \leqslant \left|f^j(0) f^{\alpha(k)}(0)\right| d_{\alpha(k)}$.
 - $\text{(b) En d\'eduire R\'e}\left(\omega_k\,f^j(0)\right)\leqslant -(\ell-\epsilon_k)j.$
- $10. \ \ Montrer\ l'existence\ d'un\ complexe\ \omega_{\infty}\in \mathbb{U}\ tel\ que\ \forall j\in \mathbb{N}, R\acute{e}\left(\omega_{\infty}\ f^{j}(0)\right)\leqslant -\ell\ j.$
- 11. Montrer que $\left(\frac{f^{j}(0)}{j}\right)_{j\in\mathbb{N}^{*}}$ possède une unique valeur d'adhérence, et en déduire qu'elle converge.

Remarque. La preuve donnée ici est due à Anders Karlsson (2001).