Interrogation de calcul 20

Question 1. Déterminer un équivalent simple en $+\infty$ de $x \mapsto \left(1 + \frac{1}{x^2}\right)^{x^3}$.	

$= \left(\underbrace{\begin{pmatrix} -2\\1\\1\\1 \end{pmatrix}}_{=v_1}, \underbrace{\begin{pmatrix} 1\\-2\\1\\-2 \end{pmatrix}}_{=v_2}, \underbrace{\begin{pmatrix} 1\\1\\-2\\-2 \end{pmatrix}}_{=v_3} \right).$		 	
$\mathbf{f} = \left(\underbrace{\begin{pmatrix} -2\\1\\1 \end{pmatrix}}_{1}, \underbrace{\begin{pmatrix} 1\\-2\\1 \end{pmatrix}}_{1}, \underbrace{\begin{pmatrix} 1\\1\\-2 \end{pmatrix}}_{-2} \right).$			
	$= \left(\underbrace{\begin{pmatrix} -2\\1\\1 \end{pmatrix}}, \underbrace{\begin{pmatrix} 1\\-2\\1 \end{pmatrix}}, \underbrace{\begin{pmatrix} 1\\1\\-2 \end{pmatrix}}\right).$		

Question 2. Dire si les familles suivantes de \mathbb{R}^3 sont libres. Si elles sont liées, on donnera une relation

vlon	ntrer que $\mathcal{B} = (1, X, X(X-1), X(X-1)(X-2))$ est une base de $\mathbb{R}_3[X]$.	
Déte	erminer les coordonnées de $X+1$ dans la base ${\mathfrak B}.$	
Déte	erminer les coordonnées de $X^3 + X^2$ dans la base \mathcal{B} .	
Déte	erminer Vect $(X, X(X - 1), X(X - 1)(X - 2))$.	