Huitième composition de mathématiques [corrigé]

Exercice 1. Quelques intégrales.

1. Calculer $\int_{1}^{4} e^{-\sqrt{x}} dx$.

On a

$$\int_{1}^{4} e^{-\sqrt{x}} dx = \int_{1}^{2} e^{-u} 2u du$$

$$= 2 \left(\left[-u e^{-u} \right]_{u=1}^{2} + \int_{1}^{2} e^{-u} du \right)$$

$$= 2 \left(-2 e^{-2} + e^{-1} \right) + 2 \left[-e^{-u} \right]_{u=1}^{2}$$

$$= -4e^{-2} + 2e^{-1} + 2 \left(-e^{-2} + e^{-1} \right)$$

$$= 4e^{-1} - 6e^{-2}.$$

$$\left[\begin{array}{c} x = u^{2} \\ dx = 2u du \\ u \mapsto u^{2} de classe C^{1} \end{array} \right]$$

$$= u \mapsto u \mapsto e^{-u} de classe C^{1}$$

$$= -4e^{-2} + 2e^{-1} + 2 \left(-e^{-2} + e^{-1} \right)$$

$$= 4e^{-1} - 6e^{-2}.$$

2. Calculer $\int_0^\pi \sin(2t) \, e^{\cos(t)} \, dt$.

Le point-clef est la formule de trigonométrie $\forall t \in \mathbb{R}, sin(2t) = 2 sin(t) cos(t)$, donc l'intégrale vaut

$$I = 2 \int_0^{\pi} \sin(t) \cos(t) e^{\cos(t)} dt.$$

À partir de là, plusieurs possibilités s'offrent à nous.

Intégration par parties. On remarque que la dérivée de $u:t\mapsto e^{\cos(t)}$ est $u':t\mapsto -\sin(t)$ $e^{\cos(t)}$, donc

$$\begin{split} I &= 2 \int_0^\pi - u'(t) \, \cos(t) \, dt \\ &= 2 \left(\left[-u(t) \, \cos(t) \right]_{t=0}^\pi - \int_0^\pi - u(t) \, (-\sin(t)) \, dt \right) \qquad (u \, \textit{et} - \cos \textit{sont de classe } C^1) \\ &= 2 \left(\left[-e^{\cos(t)} \, \cos(t) \right]_{t=0}^\pi - \int_0^\pi e^{\cos(t)} \, \sin(t) \, dt \right) \\ &= 2 \left(\left(e^{-1} + e^1 \right) - \left[-e^{\cos(t)} \right]_{t=0}^\pi \right) \\ &= 2 \left(\left(e^{-1} + e \right) - \left(-e^{-1} + e^1 \right) \right), \\ &= \frac{4}{e}. \end{split}$$

Changement de variables. On a

$$\begin{split} I &= 2 \int_0^\pi \sin(t) \, \cos(t) \, e^{\cos(t)} \, dt \\ &= -2 \int_e^{1/e} \ln u \, du \\ &= -2 \int_e^{1/e} \ln u \, du \\ &= -\sin(t) \, e^{\cos(t)} \, dt \\ \exp \circ \cos \, est \, de \, classe \, C^1 \end{split}$$

$$= 2 \int_{1/e}^{e} \ln u \, du$$

$$= 2 \left[u \ln u - u \right]_{u=1/e}^{e}$$

$$= 2 \left((e \times 1 - e) - \left(\frac{1}{e} \times (-1) - \frac{1}{e} \right) \right)$$

$$= \frac{4}{e}.$$

Changement de variables puis intégration par parties. On a

$$\begin{split} & I = 2 \int_{0}^{\pi} \sin(t) \, \cos(t) \, e^{\cos(t)} \, dt \\ & = -2 \int_{1}^{-1} u \, e^{u} \, du \qquad \qquad \left[\begin{array}{c} u = \cos(t) \\ du = -\sin(t) \, dt \\ \cos \, est \, de \, classe \, C^{1} \end{array} \right] \\ & = 2 \int_{-1}^{1} u \, e^{u} \, du \\ & = 2 \left(\left[u \, e^{u} \right]_{u=-1}^{1} - \int_{-1}^{1} e^{u} \, du \right) \qquad \qquad (u \mapsto u \, et \, exp \, sont \, de \, classe \, C^{1}) \\ & = 2 \left(\left(e^{1} + e^{-1} \right) - \left[e^{u} \right]_{u=-1}^{1} \right) \\ & = 2 \left(\left(e^{1} + e^{-1} \right) - \left(e^{1} - e^{-1} \right) \right) \\ & = \frac{4}{e}. \end{split}$$

3. On définit par récurrence la suite $(d_n)_{n\in\mathbb{N}}$ par

$$d_0 = 1$$
 et $\forall n \in \mathbb{N}, d_{n+1} = (n+1)d_n + (-1)^{n+1}$.

(a) Calculer d_0 , d_1 , d_2 , d_3 et d_4 .

On obtient les premières valeurs suivantes.

n	0	1	2	3	4
dn	1	0	1	2	9

(b) Montrer que

$$\forall n \in \mathbb{N}, \int_0^1 t^n e^t dt = (-1)^n [d_n e - n!]$$

 $\label{eq:pour tout n lemma pour tout n lemma$

Initalisation. On a

$$\int_{0}^{1} t^{0} e^{t} dt = \int_{0}^{1} e^{t} dt$$

$$= \left[e^{t} \right]_{t=0}^{1}$$

$$= e - 1$$

$$= (-1)^{0} (d_{0} e - 0!),$$

ce qui démontre P(0).

Hérédité. *Soit* $n \in \mathbb{N}$ *tel que* P(n).

On a alors, par intégration par parties (appliquée aux fonctions $t\mapsto t^{n+1}$ et exp, lisses donc de classe C^1).

$$\begin{split} \int_0^1 t^{n+1} \, e^t \, dt &= \left[t^{n+1} \, e^t \right]_{t=0}^1 - (n+1) \int_0^1 t^n \, e^t \, dt \\ &= (e-0) - (n+1) \left((-1)^n \left[d_n e - n! \right] \right) \qquad (\textit{d'après } P(n)) \\ &= e + (-1)^{n+1} (n+1) d_n e + (-1)^n (n+1) n! \\ &= (-1)^{n+1} \left[\left((-1)^{n+1} e + (n+1) d_n e \right] + (-1)^n (n+1)! \right. \\ &= (-1)^{n+1} \left[\left((n+1) d_n + (-1)^{n+1} \right) e - (n+1)! \right] \\ &= (-1)^{n+1} \left[d_{n+1} e - (n+1)! \right], \end{split}$$

ce qui montre P(n + 1) et clôt la récurrence.

(c) En déduire que $d_n = \frac{n!}{e} + \underset{n \to +\infty}{o} (1)$.

On utilise la positivité de l'intégration : la fonction $t\mapsto t^n\,e^t$ est positive sur [0,1], donc

$$\int_0^1 t^n e^t dt \geqslant 0.$$

D'un autre côté, on a $\forall t \in [0, 1]$, $e^t \leq e$, donc $\forall t \in [0, 1]$, $t^n e^t \leq e t^n$, donc

$$\int_0^1 t^n e^t dt \le \int_0^1 e t^n dt = \frac{e}{n+1}.$$

Ainsi, on a $\forall n \in \mathbb{N}, 0 \leqslant \int_0^1 t^n \, e^t \, dt \leqslant \frac{e}{n+1}$ et le théorème des gendarmes entraı̂ne

$$\int_0^1 t^n e^t dt \xrightarrow[n \to +\infty]{} 0.$$

Cela entraı̂ne $d_n e - n! \xrightarrow[n \to +\infty]{} 0$, c'est-à-dire $d_n = \frac{n!}{e} + o(1)$.

Problème. Théorème de Hartwig, Putcha et Wu (1990).

Dans tout le problème, le corps K des scalaires est \mathbb{R} ou \mathbb{C} . La lettre E désignera toujours un K-espace vectoriel de dimension finie. On notera systématiquement \mathfrak{n} la dimension de E, que l'on supposera non nulle.

Le but du problème est de caractériser les endomorphismes $f \in \mathcal{L}(E)$ qui peuvent s'écrire comme somme de projecteurs. L'énoncé précis est donné au début de la troisième partie.

Partie I. Trace d'un endomorphisme.

- 1. Soit $f \in \mathcal{L}(E)$. On se donne deux bases \mathscr{B} et \mathscr{B}' de E et l'on note $P = P_{\mathscr{B} \to \mathscr{B}'}$ la matrice de passage de \mathscr{B} vers \mathscr{B}' .
 - (a) Rappeler sans démonstration le lien entre les matrices $Mat_{\mathscr{B}}(f)$ et $Mat_{\mathscr{B}'}(f)$.

On a
$$Mat_{\mathscr{B}'}(f) = P^{-1} Mat_{\mathscr{B}}(f) P$$
.

(b) En déduire l'égalité $tr(Mat_{\mathscr{B}}(f)) = tr(Mat_{\mathscr{B}'}(f))$.

Par cyclicité de la trace :

$$tr\big(Mat_{\mathscr{B}'}(f)\big)=tr\big(P^{-1}\ Mat_{\mathscr{B}}(f)\ P\big)=tr\big(PP^{-1}\ Mat_{\mathscr{B}}(f)\big)=tr\big(Mat_{\mathscr{B}}(f)\big).$$

La quantité $\operatorname{tr}(\operatorname{Mat}_{\mathscr{B}}(f))$ ne dépend donc pas du choix de la base \mathscr{B} . Dans la suite du problème, on l'appellera *trace* de l'endomorphisme f, et on la notera simplement $\operatorname{tr}(f)$.

Cela définit une application $\operatorname{tr}: \mathscr{L}(E) \to K$.

2. (a) Montrer que $\operatorname{tr}: \mathscr{L}(E) \to K$ est une application linéaire.

Fixons une base B de E.

On obtient $\operatorname{tr}: \mathscr{L}(E) \to K$ en composant $\operatorname{Mat}_{\mathscr{B}}: \mathscr{L}(E) \to M_n(K)$ et $\operatorname{tr}: M_n(K) \to K$.

Le cours garantissant que ces deux applications sont linéaires (la première est même un isomorphisme), il en va de même de leur composée.

(b) Déterminer la dimension de son noyau.

Sous-espace vectoriel de K, l'image de $\operatorname{tr}: \mathcal{L}(E) \to K$ est de dimension ≤ 1 .

Comme $tr(I_n) = n > 0$, cette image est un sous-espace vectoriel non trivial de K, ce qui force im(tr) = K (par inclusion et égalité des dimensions), donc rg(tr) = 1.

D'après le théorème du rang, on a donc dim $ker(tr) = dim \mathcal{L}(E) - rg(tr) = n^2 - 1$.

3. Soit $\lambda \in K$. Calculer la trace de l'homothétie λ id_E.

Soit B une base quelconque de E. On a

$$tr(\lambda id_E) = tr(Mat_{\mathscr{B}}(\lambda id_E)) = tr(\lambda I_n) = \lambda n.$$

4. Montrer que l'application

$$f: \begin{cases} K_3[X] \to & K_3[X] \\ P \mapsto (1+3X)P - X^2P' \end{cases}$$

est un endomorphisme bien défini, et déterminer sa trace.

▶ La linéarité de f ne pose pas de problème (à ceci près que, pour le moment, on ne sait pas que f est bien définie, c'est-à-dire que $\forall P \in K_3[X], (3X+1)P - X^2P' \in K_3[X]$).

Si l'on veut être plus formel, l'application $\widetilde{f}: \begin{cases} K_3[X] \to K[X] \\ P \mapsto (1+3X)P - X^2P' \end{cases}$ est bien définie et linéaire, et il s'agit simplement de montrer que $K_3[X]$ est stable sous \widetilde{f} .

- ▶ On a
 - $f(1) = (1 + 3X) 0 = 1 + 3X \in \mathbb{R}_3[X]$;
 - $f(X) = (X + 3X^2) X^2 = X + 2X^2 \in \mathbb{R}_3[X]$;
 - $f(X^2) = (X^2 + 3X^3) 2X^3 = X^2 + X^3 \in \mathbb{R}_3[X]$;
 - $f(X^3) = (X^3 + 3X^4) 3X^4 = X^3 \in \mathbb{R}_3[X].$

Par linéarité, on en déduit que $\forall P \in K_3[X] = Vect(1,X,X^2,X^3), f(P) \in K_3[X].$

▶ Les calculs du point précédent permettent de déterminer la matrice de f dans la base canonique $\mathscr{B}_c = (1, X, X^2, X^3)$ de $K_3[X]$. On a alors

$$\operatorname{tr}(f) = \operatorname{tr}(\operatorname{Mat}_{\mathscr{B}_c}(f)) = \operatorname{tr}\begin{pmatrix} 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} = 4.$$

- 5. Soit $p \in \mathcal{L}(E)$ un projecteur.
 - (a) Construire une base $\mathcal{B} = (u_1, \dots, u_n)$ de E et un entier $r \in [0, n]$ tels que

$$\forall j \in [\![1,n]\!], p(u_j) = \begin{cases} u_j & \text{si } j \leqslant r \\ 0_E & \text{si } j > r. \end{cases}$$

Comme p est un projecteur, on sait que son noyau et son image sont supplémentaires.

- ▶ En notant r = rg(p), on peut fixer une base $(u_1, ..., u_r)$ de im p. Comme im $(p) = E_1(p)$, il vient $\forall j \in [1, r], p(u_j) = u_j$.
- ▶ Comme $\ker(p)$ est un supplémentaire de $\operatorname{im}(p)$, il s'agit d'un sous-espace vectoriel de E de dimension n-p. On peut alors en fixer une base (u_{r+1}, \ldots, u_n) .

 Par définition du noyau, $\forall j \in \llbracket r+1, n \rrbracket, p(u_j) = 0_E$.
- ► En concaténant ces deux familles, on obtient une base de E possédant la propriété voulue.
- (b) En déduire tr(p) = rg(p).

On déduit de la question précédente

$$tr(\mathfrak{p})=tr\big(Mat_{\mathscr{B}}(\mathfrak{p})\big)=tr\begin{pmatrix}I_{r}&0\\0&0\end{pmatrix}=r=rg(\mathfrak{p}).$$

- 6. Soit $f \in \mathcal{L}(E)$.
 - (a) Montrer $f^2=0_{\mathscr{L}(E)}$ si et seulement si $im(f)\subseteq ker(f).$

Sens direct. Supposons $f^2 = 0_{\mathscr{L}(E)}$.

Soit $y \in im(f)$. On peut donc trouver $x \in E$ tel que y = f(x). Il vient alors $f(y) = f^2(x) = 0_E$, donc $y \in ker(f)$.

Sens réciproque. *Supposons* $im(f) \subseteq ker(f)$.

Soit $x \in E$. On a $f(x) \in im(f)$, donc $im(f) \in ker(f)$, donc $f^2(x) = f\big(f(x)\big) = 0_E$. Cela montre $f^2 = 0_{\mathscr{L}(E)}$.

(b) On suppose $f^2 = 0_{\mathcal{L}(E)}$ et l'on note r = rg(f).

Construire une famille $(u_1, ..., u_r)$ de vecteurs de E telle que

- ightharpoonup $E = Vect(u_1, ..., u_r) \oplus ker(f);$
- ▶ la famille $(f(u_1), ..., f(u_r))$ soit une famille libre de ker(f).

Soit S un supplémentaire de ker(f).

D'après le théorème du rang, f induit un isomorphisme $\phi: S \to im(f)$. En particulier, dim S = r. On peut donc fixer une base (u_1, \ldots, u_r) de S.

Cela donne déjà $Vect(u_1, ..., u_r) \oplus ker(f) = S \oplus ker(f) = E$.

Comme ϕ est un isomorphisme, la famille $\big(f(u_1),\ldots,f(u_r)\big)=\big(\phi(u_1),\ldots,\phi(u_r)\big)$ est une base de $\operatorname{im}(f)$. Comme $\operatorname{im}(f)\subseteq \ker(f)$ d'après la question précédente, il s'agit bien d'une famille libre de $\ker(f)$, ce qui conclut.

(c) En déduire que si $f^2 = 0_{\mathscr{L}(E)}$, alors tr(f) = 0.

Supposons $f^2 = 0_{\mathscr{L}(E)}$ et gardons les notations de la question précédente. On peut compléter la famille $(f(u_1), \ldots, f(u_r))$ en une base $(f(u_1), \ldots, f(u_r), v_1, \ldots, v_s)$ de ker(f).

Par concaténation, $\mathscr{B}=\left(u_1,\ldots,u_r,f(u_1),\ldots,f(u_r),\nu_1,\ldots,\nu_s\right)$ est une base de E. Dans cette base, on a

$$Mat_{\mathscr{B}}(f) = \begin{pmatrix} 0_r & 0_r & 0 \\ I_r & 0_r & 0 \\ 0 & 0 & 0_s \end{pmatrix},$$

 $donc \operatorname{tr}(f) = \operatorname{tr}(\operatorname{Mat}_{\mathscr{B}}(f)) = 0$, car tous les coefficients diagonaux de cette matrice sont nuls.

Partie II. Lemme (faible) de Fillmore.

- 7. Soit $g \in \mathcal{L}(E)$. On suppose que pour tout $x \in E$, la famille (x, g(x)) est liée. Soit $\mathcal{B} = (u_1, \dots, u_n)$ une base quelconque de E.
 - (a) Montrer que la matrice $Mat_{\mathscr{B}}(g)$ est diagonale.

Soit $j \in [1,r]$. Comme $u_j \neq 0_E$ (car il figure dans une base), le caractère lié de $\left(u_j,g(u_j)\right)$ entraîne que $g(u_j) \in Vect(u_j)$: on peut donc trouver $\lambda_j \in K$ tel que $g(u_j) = \lambda_j u_j$. Ainsi, $Mat_{\mathscr{B}}(g) = diag(\lambda_1,\ldots,\lambda_n)$.

(b) En considérant le vecteur $u_1 + \cdots + u_n$, montrer que la matrice $Mat_{\mathscr{B}}(g)$ est scalaire. Qu'en déduit-on sur g?

D'une part, l'argument de la question précédente et la non-nullité de $u_1+\cdots+u_n$ montrent l'existence d'un scalaire $\sigma\in K$ tel que $g(u_1+\cdots+u_n)=\sigma(u_1+\cdots+u_n)=\sigma u_1+\cdots+\sigma u_n$. De l'autre, par linéarité, $g(u_1+\cdots+u_n)=\lambda_1 u_1+\cdots+\lambda_n u_n$.

Par liberté de \mathscr{B} , on en déduit $\forall j \in [1, n], \lambda_i = \sigma$.

Ainsi, $Mat_{\mathscr{B}}(g) = diag(\lambda_1, \ldots, \lambda_n) = \sigma I_n$: la matrice de g est scalaire.

On en déduit que $q = \sigma$ id_E est une homothétie.

8. Soit $g \in \mathcal{L}(E)$ qui ne soit pas une homothétie. En utilisant judicieusement la question précédente, montrer qu'il existe une base \mathscr{B} de E telle que le coefficient (1,1) de la matrice $\mathrm{Mat}_{\mathscr{B}}(g)$ soit nul.

La question précédente a montré que si, pour tout $x \in E$, la famille (x,g(x)) est liée, alors g est une homothétie.

Comme g n'est pas une homothétie, par contraposée, on peut trouver $x \in E$ tel que (x, g(x)) soit libre. En notant $u_1 = x$ et $u_2 = g(x)$, on peut alors compléter la famille (u_1, u_2) en une base \mathscr{B} de E.

Le fait que $g(u_1) = u_2$ montre que la première colonne de $Mat_{\mathscr{B}}(g)$ est le deuxième vecteur e_2 de la base canonique. A fortiori, $[Mat_{\mathscr{B}}(g)]_{1,1} = 0$.

9. Soit $g \in \mathcal{L}(E)$ qui ne soit pas une homothétie et $\tau \in K$. Montrer qu'il existe une base \mathcal{B} de E telle que le coefficient (1,1) de la matrice $Mat_{\mathcal{B}}(g)$ vaille τ .

Comme g n'est pas une homothétie, $g-\tau$ id_E n'en est pas non plus une. D'après la question précédente, on peut trouver une base $\mathscr B$ de E telle que $[Mat_{\mathscr B}(g-\tau id_E)]_{1,1}=0$.

On en déduit $[Mat_{\mathscr{B}}(g)]_{1,1} = \tau$.

Remarque. Le lemme de Fillmore (1969) affirme quelque chose de plus fort : étant donné $g \in \mathcal{L}(E)$ qui n'est pas une homothétie et $\tau_1, \ldots, \tau_n \in K$ tels que $\tau_1 + \cdots + \tau_n = \operatorname{tr}(g)$, il est possible de trouver une base \mathscr{B} telle que les coefficients diagonaux de $\operatorname{Mat}_{\mathscr{B}}(g)$ soient τ_1, \ldots, τ_n .

La question précédente est en fait l'amorce d'une démonstration par récurrence du lemme de Fillmore : il faut simplement être un peu soigneux pour justifier qu'il est possible d'exiger également (quitte à modifier un peu la base \mathscr{B}) que le bloc sud-est de la matrice $\mathrm{Mat}_{\mathscr{B}}(g)$, qui est de format $(n-1)\times(n-1)$, soit lui-même non scalaire. C'est un bon exercice (et le cas particulier « toute matrice de trace nulle est semblable à une matrice de diagonale nulle » est un grand classique).

Partie III. Théorème HPW: sens facile et un corollaire.

La fin du problème a pour but de démontrer le théorème suivant.

Théorème HPW.

Soit $f \in \mathcal{L}(E)$. Les assertions suivantes sont équivalentes :

- (C1) Il existe un entier naturel $m \in \mathbb{N}$ et des projecteurs $p_1, \dots, p_m \in \mathscr{L}(E)$ tels que $f = \sum_{k=1}^m p_k$.
- **(C2)** La trace tr(f) est un entier, et $tr(f) \ge rg(f)$.
- 10. Soit $g_1, g_2 \in \mathcal{L}(E)$.
 - (a) Montrer $rg(g_1 + g_2) \le rg(g_1) + rg(g_2)$.
 - ► On montre par rédaction automatique $\operatorname{im}(g_1 + g_2) \subseteq \operatorname{im}(g_1) + \operatorname{im}(g_2)$. Soit $y \in \operatorname{im}(g_1 + g_2)$. On peut donc trouver $x \in E$ tel que $y = (g_1 + g_2)(x) = g_1(x) + g_2(x) \in \operatorname{im}(g_1) + \operatorname{im}(g_2)$.
 - ▶ D'après la formule de Grassmann, étant donné deux sous-espaces vectoriels F et G de E, on a $\dim(F+G) = \dim F + \dim G \dim(F\cap G) \leq \dim F + \dim G$. Ainsi,

$$rg(g_1 + g_2) \le dim(im g_1 + im g_2) \le rg(g_1) + rg(g_2).$$

(b) Montrer $rg(g_1 + g_2) = rg(g_1) + rg(g_2) \Leftrightarrow im(g_1 + g_2) = im(g_1) \oplus im(g_2)$.

D'après le raisonnement précédent, $rg(g_1+g_2)=rg(g_1)+rg(g_2)$ si et seulement si les deux inégalités utilisées plus haut sont en fait des égalités, c'est-à-dire si et seulement si l'on a simultanément $im(g_1+g_2)=im(g_1)+im(g_2)$ et $dim(im(g_1)\cap im(g_2))=0$.

La deuxième inégalité signifie simplement que $im(g_1)$ et $im(g_2)$ sont en somme directe, donc on peut reformuler ces deux conditions en l'unique condition $im(g_1 + g_2) = im(g_1) \oplus im(g_2)$.

11. Montrer l'implication (C1) \Rightarrow (C2).

Supposons (C1).

On peut donc trouver $m \in \mathbb{N}$ et des projecteurs $p_1, \ldots, p_m \in \mathscr{L}(E)$ tels que $f = \sum_{k=1}^m p_k$.

▶ On a déjà, par linéarité de la trace et d'après la question 5b,

$$tr(f) = \sum_{k=1}^m tr(p_k) = \sum_{k=1}^m rg(p_k) \in \mathbb{N}.$$

▶ Par ailleurs, la question précédente et une récurrence immédiate montrent $\operatorname{rg}\left(\sum_{k=1}^m p_k\right) \leqslant \sum_{k=1}^m \operatorname{rg}(p_k)$.

On en déduit

$$\operatorname{tr}(f) = \sum_{k=1}^{m} \operatorname{rg}(p_k) \geqslant \operatorname{rg}\left(\sum_{k=1}^{m} p_k\right) = \operatorname{rg}(f),$$

ce qui conclut.

12. Dans cette question, on admet le théorème HPW. Soit $f \in \mathcal{L}(E)$.

Donner une condition nécessaire et suffisante pour qu'il existe un entier naturel $\mathfrak{m} \in \mathbb{N}$, des

projecteurs
$$p_1, \ldots, p_m \in \mathcal{L}(E)$$
 et des signes $\epsilon_1, \ldots, \epsilon_m \in \{\pm 1\}$ tels que $f = \sum_{k=1}^m \epsilon_k \, p_k$.

Remarquons qu'en termes un peu plus relâchés, la question demande de caractériser les différences g-h, où $g,h\in \mathscr{L}(E)$ sont des sommes de projecteurs. On va montrer qu'il s'agit exactement des endomorphismes dont la trace est un entier relatif.

Sens direct. Supposons g et h sommes de projecteurs. D'après la question précédente, tr(g), $tr(h) \in \mathbb{N}$, $donc tr(g-h) = tr(g) - tr(h) \in \mathbb{Z}$.

Sens récipoque. Supposons $tr(f) \in \mathbb{Z}$. Pour $q \in \mathbb{N}$ suffisamment grand, $tr(f+q id_E) = tr(f) + qn$ est un entier naturel $\geqslant n$. En particulier, $tr(f+q id_E) \in \mathbb{N}$ et $tr(f+q id_E) \geqslant rg(f+q id_E)$. D'après le théorème HPW, $f+q id_E$ est donc une somme de projecteurs. Comme $q id_E$ est clairement une somme de projecteurs, la décomposition $f=(f+q id_E)-q id_E$ montre que f est bel et bien la différence de deux sommes de projecteurs.

Partie IV. Rech. proj. pour proj. priv.

Soit $f \in \mathcal{L}(E)$. Un projecteur $p \in \mathcal{L}(E)$ sera dit *privilégié* pour f si le rang de p vaut 1 et que l'on a la décomposition $im(f) = im(p) \oplus im(f - p)$.

13. Soit $p \in \mathcal{L}(E)$ un projecteur de rang 1. On suppose $\operatorname{im}(p) \subseteq \operatorname{im}(f)$ et que les sous-espaces vectoriels $\operatorname{im}(p)$ et $\operatorname{im}(f-p)$ sont en somme directe.

Montrer que p est un projecteur privilégié pour f.

Il s'agit donc de montrer que im(f) = im(p) + im(f - p).

- ▶ L'égalité f = p + (f p) montre déjà l'inclusion directe, comme à la question 10a.
- ▶ On a par hypothèse l'inclusion $im(p) \subseteq im(f)$. L'égalité f - p = f + (-p) montre alors l'inclusion

$$im(f-p) \subseteq im(f) + im(-p) = im(f) + im(p) = im(f)$$
.

Par propriété de la somme, on en déduit l'inclusion réciproque $im(p) + im(f - p) \subseteq im(f)$.

14. Dans cette question, on suppose qu'il existe une base $\mathscr{B} = (u_1, \dots, u_n)$ de E telle que $u_1 \in \text{im}(f)$ et $f(u_1) - u_1 \in \text{Vect}(u_2, \dots, u_n)$.

On note \widetilde{p} le projecteur sur $Vect(\mathfrak{u}_1)$ parallèlement à $Vect(\mathfrak{u}_2,\ldots,\mathfrak{u}_n)$, et on va montrer que $p=\widetilde{p}\circ f$ est un projecteur privilégié pour f.

- (a) Montrer que $rg(p) \leq 1$ et calculer $p(u_1)$.
 - On $a \operatorname{rg}(p) = \operatorname{rg}(\widetilde{p} \circ f) \leqslant \operatorname{rg}(\widetilde{p}) = 1$.

$$\qquad \qquad \bullet \quad \textit{On a} \ f(u_1) = u_1 + \underbrace{\left(f(u_1) - u_1\right)}_{\in Vect(u_2, \ldots, u_n)}, \textit{donc} \ \widetilde{p}\left(f(u_1)\right) = u_1, \textit{c'est-\`a-dire} \ p(u_1) = u_1.$$

- (b) En déduire $E = Vect(u_1) \oplus ker(p)$, puis que p est un projecteur de rang 1.
 - ▶ D'après le théorème du rang, $\dim \ker(p) = n 1$.
 - ▶ Comme $u_1 \neq 0_E$, Vect (u_1) est une droite. Puisque $p(u_1) = u_1 \neq 0_E$, on a $u_1 \notin \ker(p)$, ce qui montre facilement que Vect (u_1) et $\ker(p)$ sont en somme directe.

On en déduit que la droite $Vect(u_1)$ et l'hyperplan ker(p) sont supplémentaires.

Pour tout $x \in \ker(p)$, on a évidemment $p(x) = 0_E$. Comme $p(u_1) = u_1$, on a de même p(x) = x pour tout $x \in \text{Vect}(u_1)$. Cela montre que p est le projecteur sur $\text{Vect}(u_1)$ parallèlement à $\ker(p)$, ce qui conclut.

(c) Conclure.

D'après la question 13, il suffit de montrer que $im(\mathfrak{p}) = Vect(\mathfrak{u}_1) = im(\widetilde{\mathfrak{p}})$ et $im(\mathfrak{f}-\mathfrak{p})$ sont en somme directe.

Or, $f-p=f-\widetilde{p}\circ f=(id_E-\widetilde{p})\circ f$. Or, $id_E-\widetilde{p}$ est le projecteur sur $Vect(\mathfrak{u}_2,\ldots,\mathfrak{u}_n)$ parallèlement à $Vect(\mathfrak{u}_1)$, donc les sous-espaces vectoriels im(p) et $im(id_E-\widetilde{p})$ sont en somme directe (et même supplémentaires).

L'inclusion $\operatorname{im}(f-p)=\operatorname{im}\bigl((\operatorname{id}_E-\widetilde{p})\circ f\bigr)\subseteq\operatorname{im}(\operatorname{id}_E-\widetilde{p})$ montre a fortiori que $\operatorname{im}(f-p)$ et $\operatorname{im}(p)$ sont en somme directe, ce qui conclut.

- 15. On suppose $f^2 \notin Vect(f)$.
 - (a) Montrer que f induit un endomorphisme ϕ de im(f), et que cet endomorphisme n'est pas une homothétie.

Le sous-espace vectoriel im(f) est tautologiquement stable sous f, donc f induit bel et bien un endomorphisme $\phi \in \mathcal{L}(im(f))$.

Si ϕ était une homothétie, on pourrait trouver $\alpha \in K$ tel que $\phi = \alpha$ $id_{im(f)}$ et on en déduirait, pour tout $x \in E$,

$$\mathsf{f}^2(x)=\mathsf{f}\big(\mathsf{f}(x)\big)=\phi\big(\mathsf{f}(x)\big)=\alpha\,\mathsf{f}(x),$$

ce qui donnerait $f^2 = \alpha f \in Vect(f)$ et contredirait l'hypothèse.

(b) En appliquant judicieusement les questions 9 et 14, montrer que f possède un projecteur privilégié.

Notons r = rg(f).

Comme $\phi \in \mathcal{L}(im(f))$ n'est pas une homothétie, on peut appliquer la question 9 à $g = \phi$ et $\tau = 1$, et obtenir une base $\check{\mathscr{B}} = (u_1, \dots, u_r)$ de im(f) telle que $\left[Mat_{\check{\mathscr{B}}}(\phi)\right]_{1,1} = 1$.

(Remarquons que le fait que ϕ ne soit pas une homothétie montre notamment $r \geqslant 2$: il n'y a donc pas de problème à appliquer la question 9 à im(f), malgré l'hypothèse générale que la dimension des espaces vectoriels considérés est toujours non nulle.)

Le vecteur u_1 est donc un vecteur de im(f) tel que $f(e_1) = \phi(e_1)$ et $f(e_1) - e_1 \in Vect(u_2, \ldots, u_r)$. D'après le théorème de la base incomplète, on peut prolonger la base $\check{\mathscr{B}}$ de im(f) (qui est donc une famille libre de E) en une base $\mathscr{B} = (u_1, \ldots, u_n)$ de E. On obtient a fortiori $u_1 \in im(f)$ et $f(e_1) - e_1 \in Vect(u_2, \ldots, u_n)$.

D'après la question 14, l'endomorphisme f possède donc un projecteur privilégié.

Partie V. Théorème HPW: sens difficile.

On va conclure la démonstration du théorème HPW « par récurrence sur le rang de f. » Plus précisément, pour tout $r \in [0, n]$, on note HPW(r) l'assertion

« Pour tout $f \in \mathscr{L}(E)$ tel que rg(f) = r, $tr(f) \in \mathbb{N}$ et $tr(f) \geqslant r$, il existe $\mathfrak{m} \in \mathbb{N}$ et des projecteurs $\mathfrak{p}_1, \ldots, \mathfrak{p}_\mathfrak{m} \in \mathscr{L}(E)$ tels que $f = \sum_{k=1}^\mathfrak{m} \mathfrak{p}_k$, »

et on se propose de montrer $\forall r \in [0, n], HPW(r)$ par récurrence finie.

16. Écrire précisément l'initialisation de la récurrence.

Soit $f \in \mathcal{L}(E)$ tel que rg(f) = 0, $tr(f) \in \mathbb{N}$ et $tr(f) \geqslant 0$. L'endomorphisme f est donc nul, et la famille vide de projecteurs (), correspondant à m = 0, convient. Cela montre HPW(0).

- 17. Soit $r \in [1, n]$ tel que HPW(r 1). Soit $f \in \mathcal{L}(E)$ tel que rg(f) = r, $tr(f) \in \mathbb{N}$ et $tr(f) \ge r$.
 - (a) On suppose $f^2 \not\in Vect(f)$. Montrer que f est une somme de projecteurs.

D'après le résultat de la partie précédente, f possède un projecteur privilégié p. L'égalité $im(f) = im(p) \oplus im(f-p)$ montre (après passage à la dimension) que rg(f-p) = r-1. Par ailleurs, par linéarité de la trace et d'après la question 5b, on a

$$tr(f-p)=tr(f)-tr(p)=\underbrace{tr(f)-1}_{\in\mathbb{N}}\geqslant rg(f)-1=r-1,$$

donc l'assertion HPW(r-1) montre que f-p est une somme de projecteurs. On en déduit que f=(f-p)+p est également une somme de projecteurs.

(b) Conclure la démonstration du théorème HPW.

Il reste à montrer que f est une somme de projecteurs dans le cas où $f^2 \in Vect(f)$. Supposons donc être dans ce cas, et fixons $\alpha \in K$ tel que $f^2 = \alpha f$.

Tout d'abord, $\alpha \neq 0$. En effet, si l'on avait $f^2 = 0_{\mathscr{L}(E)}$, la question 6c montrerait que tr(f) = 0. L'inégalité $tr(f) \geqslant r$ entraînerait alors r = 0, ce qui est exclu.

L'endomorphisme $g=\frac{1}{\alpha}f$ vérifie $g^2=g$, donc il s'agit d'un projecteur. Comme dans la question 5, on peut donc trouver une base $\mathscr B$ de E telle que

$$\mathrm{Mat}_{\mathscr{B}}(g) = \begin{pmatrix} \mathrm{I}_{r} & 0 \\ 0 & 0 \end{pmatrix} \qquad \textit{et donc} \qquad \mathrm{M} := \mathrm{Mat}_{\mathscr{B}}(\mathsf{f}) = \begin{pmatrix} \alpha \, \mathrm{I}_{r} & 0 \\ 0 & 0 \end{pmatrix}.$$

Les conditions sur la trace de f donnent $\alpha r \in \mathbb{N}$ et $\alpha r \geqslant r$ (ce qui entraîne $\alpha \geqslant 1$). Si $\alpha = 1$, f est déjà un projecteur, donc il n'y a rien à montrer. De même, si r = 1, on a $\alpha \in \mathbb{N}^*$ et f est une somme de projecteurs, en prenant $m = \alpha$ et $p_1 = \dots = p_m = \frac{1}{\alpha} f$.

On peut donc supposer $r\geqslant 2$ et $\alpha>1$, ce qui donne $\alpha r>r$. Cette inégalité entre entiers se promeut en l'inégalité large $\alpha r-1\geqslant r$.

La matrice $N=M-E_{1,1}=diag(\underbrace{\alpha-1,\alpha,\ldots,\alpha}_{r\ coefficients},0,\ldots,0)$ est alors de rang r (parce que $\alpha>1$), de trace $\alpha r-1\geqslant r$ et elle vérifie $N^2\not\in Vect(N)$ par un calcul direct exploitant le fait que $r\geqslant 2$.

de trace $\alpha r - 1 \ge r$ et elle vérifie $N^2 \not\in Vect(N)$ par un calcul direct exploitant le fait que $r \ge 2$. D'après la question précédente, l'endomorphisme h associé à N dans la base \mathscr{B} est donc une somme de projecteurs.

Par ailleurs, l'endomorphisme p associé à $E_{1,1}$ est lui-même un projecteur (car $E_{1,1}^2=E_{1,1}$).

L'endomorphisme f = h + p est donc lui aussi une somme de projecteurs.

Tous les cas ayant été traités, on a montré HPW(r), ce qui conclut la démonstration du théorème HPW.