Matrices

Exercice 3.
Penser aux matrices élémentaires
Exercice 4.
Pour la deuxième question, on pourra (comme d'habitude) préférer travailler avec les normes au carré et penser à utiliser l'inégalité de Cauchy-Schwarz.
Pour la troisième, on pourra penser à la règle du produit nul.
Exercice 8. On pourra raisonner par analyse et synthèse, voire aller relire la preuve du fait que toute fonction $\mathbb{R} \to \mathbb{R}$ s'écrit de façon unique comme la somme d'une fonction paire et d'une fonction impaire.
Exercice 9.
Difficile de donner une indication sans <i>spoiler</i> . Disons que cet exercice est difficile, jusqu'à ce qu'on tombe sur l'outil du cours qui le trivialise
Exercice 13 On pourra penser à appliquer la ∀-assertion aux matrices élémentaires.
Exercice 15.
Si une matrice M commute avec deux matrices A_1, A_2 , elle commute également avec leur produit. Comme l'ensemble des matrices antisymétriques n'est pas stable par produit, cette remarque est ich exploitable.
On prendra par ailleurs garde au fait que le cas $n=2$ est particulier (et dans le cas « générique » $n\geqslant 3$, il faudra bien trouver une façon d'exploiter cette hypothèse supplémentaire).
Exercice 16.
On pourra se ramener au fait que si deux matrices U et V vérifient $UV = I_n$, alors elles commutent (pourquoi, déjà?).
Exercice 25.
Commencer à étudier les cas $n = 2$ et $n = 3$.
Exercice 29.
On pourra commencer par le cas $n = 3$ pour voir ce qu'il se passe.
Exercice 30.

2. On pourra calculer le carré de la matrice et chercher à appliquer la question précédente. Pour élever la matrice au carré, une possibilité est de l'écrire sous la forme $J_n - I_n$, où J_n est la *all-ones matrix* bien connue.

Exercice 31._

Pour la première question, on pourra considérer $\sum_{k=0}^{p-1} M^k$, et penser à la formule donnant la somme des termes d'une suite géométrique.

Autocorrection

Autocorrection A._

(i) On trouve 40 I₂.

(ii) On trouve diag(2, 4, -2).

Autocorrection B.

On trouve
$$A^2 = \begin{pmatrix} -\cos^2 x & -\cos x \sin x & \cos x \\ -\cos x \sin x & -\sin^2 x & \sin x \\ -\cos x & -\sin x & 1 \end{pmatrix}$$
 et $A^3 = 0$.

Un point important est que I₃ et A commutent, donc on peut utiliser la formule du binôme de Newton.

• $(I_3 + A)^0 = I_3;$

• $(I_3 + A)^1 = I_3 + A;$

• $(I_3 + A)^2 = I_3 + 2A + A^2$;

 $(I_3 + A)^3 = I_3 + 3A + 3A^2 + A^3 = I_3 + 3A + 3A^2.$

Et ainsi de suite : comme $A^3=0$, on montre facilement (par exemple par récurrence) que l'on ait $\forall k\geqslant 3, A^k=0$.

Continuons le calcul : si $n \ge 2$, on a

$$\begin{split} (I_3+A)^n &= \sum_{k=0}^n \binom{n}{k} A^k I_3^{n-k} & \text{(binôme de Newton)} \\ &= \binom{n}{0} A^0 + \binom{n}{1} A^1 + \binom{n}{2} A^2 & \text{(car } \forall k \geqslant 3, A^k = 0) \\ &= I_3 + nA + \frac{n(n-1)}{2} A^2. \end{split}$$

Autocorrection C._

1. On obtient après calculs par blocs :

$$M^2 = \begin{pmatrix} A^2 & A^2 + A \\ 0 & I_n \end{pmatrix} \qquad \text{et} \qquad M^3 = \begin{pmatrix} A^3 & A^3 + A^2 + A \\ 0 & I_n \end{pmatrix}.$$

2

 $\text{2. Pour tout } k \in \mathbb{N} \text{, on note } P(k) \text{ l'assertion } M^k = \begin{pmatrix} A^k & \sum_{\ell=1}^k A^\ell \\ 0 & I_n \end{pmatrix}.$

Montrons $\forall k \in \mathbb{N}, P(k)$ par récurrence.

 $\mbox{\bf Initialisation.} \ \ L'assertion \ P(0) \ est \ vraie \ car \ M^0 = I_{2n} = \begin{pmatrix} I_n & 0 \\ 0 & I_n \end{pmatrix}.$

Notons que
$$A^0 = I_n$$
 et que $\sum_{\ell=1}^0 A^\ell = 0$ (somme vide).

Hérédité. Soit $k \in \mathbb{N}$ tel que P(k). On a alors

$$\begin{split} M^{k+1} &= M M^k \\ &= \begin{pmatrix} A & A \\ 0 & I_n \end{pmatrix} \begin{pmatrix} A^k & \sum_{\ell=1}^k A^\ell \\ 0 & I_n \end{pmatrix} \\ &= \begin{pmatrix} A A^k & A \sum_{\ell=1}^k A^\ell + A I_n \\ 0 & I_n \end{pmatrix} \\ &= \begin{pmatrix} A^{k+1} & A + \sum_{\ell=1}^k A^{\ell+1} \\ 0 & I_n \end{pmatrix} \\ &= \begin{pmatrix} A^{k+1} & \sum_{j=1}^{k+1} A^j \\ 0 & I_n \end{pmatrix}, \qquad \text{(changement d'indices } j = \ell+1 \text{ et relation de Chasles)} \end{split}$$

ce qui montre P(k + 1) et clôt la récurrence.