Applications linéaires

Exemples

Autocorrection A.

 \mathbf{V}

Les applications suivantes sont-elles linéaires?

(i)
$$\begin{cases} K^2 \to K \\ (x,y) \mapsto xy \end{cases}$$

$$(x) \ \begin{cases} K[X] \to K[X] \\ P \mapsto P(X^2) \end{cases}$$

(ii)
$$\begin{cases} K^2 \to K^3 \\ (x,y) \mapsto (1+x,2x,y) \end{cases}$$

(xi)
$$\begin{cases} K[X] \to K[X] \\ P \mapsto P(X)^2 \end{cases}$$

(iii)
$$\begin{cases} K^3 \to K^2 \\ (x,y,z) \mapsto (x-3z,2x+y) \end{cases}$$

$$\text{(xii) } \begin{cases} C^2(\mathbb{R}) \to C^0(\mathbb{R}) \\ f \mapsto f'' - 2f' + f \end{cases}$$

(iv)
$$\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x + 1 \end{cases}$$

$$\text{(xiii)} \ \begin{cases} C^0(\mathbb{R}) \to & \mathbb{R} \\ f \mapsto f(1) + f(-1) \end{cases}$$

$$\text{(v) } \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto |x| \end{cases}$$

$$(xiv) \ \begin{cases} C^0(\mathbb{R}) \to C^0(\mathbb{R}) \\ f \mapsto f^2 + 2f \end{cases}$$

(vi)
$$\begin{cases} \mathbb{R}_+ \to \mathbb{R} \\ x \mapsto |x| \end{cases}$$

$$(xv) \ \begin{cases} \mathbb{R}^{\mathbb{R}} \to \mathbb{R} \\ f \mapsto |f(0)| \end{cases}$$

(vii)
$$\begin{cases} \mathbb{C}^2 \to \mathbb{C} \\ (x,y) \mapsto x^2 - y^2 \end{cases}$$

(xvi)
$$\begin{cases} C^0(\mathbb{R}) \to \mathbb{R} \\ f \mapsto \int_0^1 f^2 \end{cases}$$

(viii)
$$\begin{cases} K^3 \to K^3 \\ (x,y,z) \mapsto (y,x,x+y) \end{cases}$$

(xvii)
$$\begin{cases} C^n(\mathbb{R}) \to C^0(\mathbb{R}) \\ f \mapsto f^{(n)} \end{cases} \text{ (où } n \in \mathbb{N}^*)$$

(ix)
$$\begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto \min(x,y) \end{cases}$$

$$(xviii) \ \left\{ \begin{cases} f \in C^0(\mathbb{R};\mathbb{C}) \ \middle| \ f \ converge \ en \ \pm \infty \end{cases} \right\} \to \quad \mathbb{C} \\ f \qquad \qquad \mapsto \lim_{+\infty} f - \lim_{-\infty} f.$$

Exercice 1.

- 1. Déterminer toutes les applications K-linéaires $K \rightarrow K$.
- 2. Plus généralement, montrer que $\mathcal{L}(K^p, K^n) = \{ \phi_A \mid A \in M_{n,p}(K) \}$, où ϕ_A désigne l'application linéaire canoniquement associée à A.
- 3. En déduire que les espaces vectoriels $\mathcal{L}(K^p, K^n)$ et $M_{n,p}(K)$ sont isomorphes.

Exercice 2._

Soit $E = \left\{ (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \middle| u_0 = 0 \right\} \text{ et}$

$$\Delta: \left\{ \begin{matrix} E & \to & \mathbb{R}^{\mathbb{N}} \\ \left(u_{n}\right)_{n \in \mathbb{N}} \mapsto \left(u_{n+1} - u_{n}\right)_{n \in \mathbb{N}} . \end{matrix} \right.$$

Montrer que E est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$ et que Δ est un isomorphisme.

Exercice 3.

Soit $a \in K$.

 $Montrer \ que \ E_{\alpha} = \{P \in K[X] \ | \ P(\alpha) = \emptyset \} \ est \ un \ sous-espace \ vectoriel \ de \ K[X] \text{, isomorphe à } K[X].$

Soit E un espace vectoriel et f, $g \in \mathcal{L}(E)$ tel que $f \circ g - g \circ f = f$. Montrer que

$$\forall n \in \mathbb{N}, f^n \circ g - g \circ f^n = n f^n.$$

Exercice 5⁺.__

Soit E un espace vectoriel et $f \in \mathcal{L}(E)$. On dit que f est nilpotent si $\exists n \in \mathbb{N}^* : f^n = 0$.

Montrer que dans ce cas, $id_E - f$ est un automorphisme et donner une expression de son inverse.

Noyaux et images, injectivité, surjectivité

Exemples

Autocorrection B.

Montrer que les applications suivantes sont linéaires et déterminer leurs noyaux et images.

(i)
$$\begin{cases} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x,y) \mapsto (x+2y,-2x-4y) \end{cases}$$

(iii)
$$\begin{cases} \mathbb{R}^3 & \to \mathbb{R}^2 \\ (x, y, z) & \mapsto (x - 2y, x + 2z) \end{cases}$$
(iv)
$$\begin{cases} \mathbb{R}^2 & \to \mathbb{R}^2 \\ (x, y) & \mapsto (x - 2y, x + 2y). \end{cases}$$

(i)
$$\begin{cases} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x,y) \mapsto (x+2y,-2x-4y) \end{cases}$$
(ii)
$$\begin{cases} \mathbb{R}^3 \to \mathbb{R}^3 \\ (x,y,z) \mapsto (x,2x-z,x-y+z) \end{cases}$$

(iv)
$$\begin{cases} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x,y) \mapsto (x-2y,x+2y). \end{cases}$$

Autocorrection C.___

Soit $n \geqslant 1$ un entier et $\omega \in \mathbb{R}_+^*$.

1. Montrer que

$$T_n: \left\{ \begin{matrix} \mathbb{R}_n[X] \to & \mathbb{R}_n[X] \\ P & \mapsto P'' + \omega^2 \, P \end{matrix} \right.$$

est un endomorphisme de $\mathbb{R}_n[X]$.

- 2. En calculant $T_n(1)$, $T_n(X)$, $T_n(X^2)$, ..., $T_n(X^n)$, montrer que T_n est un automorphisme de $\mathbb{R}_n[X]$.
- 3. Montrer que l'équation différentielle $y'' + \omega^2 y = x^n$ possède une unique solution polynomiale, dont on déterminera le degré.

Exercice 6._

 \mathbf{V}

 \mathbf{V}

Ŷ

 \mathbf{V}

 \mathbf{V}

1. Montrer que

$$\Delta: \begin{cases} K[X] \to K[X] \\ P \mapsto P(X+1) - P(X) \end{cases}$$

est un endomorphisme de K[X].

- 2. Montrer que $\ker \Delta = K_0[X]$.
- 3. En calculant l'image par Δ de la base canonique, déterminer im Δ .
- 4. Trouver un sous-espace vectoriel E de K[X] tel que Δ induise un isomorphisme E \to K[X].

Exercice 7. Montrer que $f: \begin{cases} \mathbb{R}[X] \to \mathbb{R}[X] \\ P \mapsto P(2X) - P(X) \end{cases}$ est linéaire et déterminer son noyau et son image.

Exercice 8.___

Soit $u \in \mathcal{L}(\mathbb{R}^3)$ l'endomorphisme canoniquement associé à la matrice $A = \begin{pmatrix} -\sqrt{2} & 0 & 1 \\ 0 & \sqrt{2} & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

- 1. Donner une base de ker u, $ker(u 2id_{\mathbb{R}^3})$ et $ker(u + 2id_{\mathbb{R}^3})$.
- 2. En déduire $\ker u \oplus \ker(u 2id_{\mathbb{R}^3}) \oplus \ker(u + 2id_{\mathbb{R}^3}) = \mathbb{R}^3$.
- 3. Montrer que $E = \ker(\mathfrak{u} 2\operatorname{id}_{\mathbb{R}^3}) \oplus \ker(\mathfrak{u} + 2\operatorname{id}_{\mathbb{R}^3})$ est stable sous \mathfrak{u} et que \mathfrak{u} induit un automorphisme de E.

Exercice 9⁺⁺. Q

- 1. Existe-t-il $T \in \mathcal{L}(C^{\infty}(\mathbb{R}))$ tel que $T \circ T$ soit l'opérateur de dérivation D?
- 2. Même question pour $C^{\infty}(\mathbb{R}^*)$.

Plus formel

 \mathbf{V} Autocorrection D._

Soit E et F deux espaces vectoriels, E_1 et E_2 deux sous-espaces vectoriels de E et $f \in \mathcal{L}(E,F)$.

Montrer que $f[E_1] \subseteq f[E_2]$ si et seulement si $E_1 + \ker f \subseteq E_2 + \ker f$.

Exercice 10.__ \mathbf{V}

Soit f, $g \in \mathcal{L}(E)$ tels que $f \circ g = g \circ f$. Montrer que ker f et im f sont stables par g.

 \mathbf{V} Exercice 11.__

Soit E, F et G trois espaces vectoriels et $(f, g) \in \mathcal{L}(E, F) \times \mathcal{L}(F, G)$.

Montrer que $g \circ f$ est nulle si et seulement si im $f \subseteq \ker g$.

Exercice 12.

Soit E, F et G trois espaces vectoriels et $(f, g) \in \mathcal{L}(E, F) \times \mathcal{L}(F, G)$.

1. Montrer que l'on a $ker(f) \subseteq ker(g \circ f)$ et que

$$ker(f) = ker(g \circ f) \Leftrightarrow im(f) \cap ker(g) = \{0\}.$$

2. Montrer que l'on a $im(g \circ f) \subseteq im(g)$ et que

$$im(g\circ f)=im(g)\Leftrightarrow im(f)+ker(g)=F.$$

3

3. Comment exprimer en général $ker(g \circ f)$ en fonction de f et ker g? De même, comment exprimer $im(g \circ f)$ en fonction de g et im f?

Exercice 13.

Soit E un espace vectoriel, $F \subseteq E$ un sous-espace vectoriel et $f \in \mathcal{L}(E)$.

- 1. Exprimer $f^{-1}[f[F]]$ en fonction de F et ker f.
- 2. Exprimer $f[f^{-1}[F]]$ en fonction de F et im f.
- 3. À quelle condition a-t-on $f\left[f^{-1}[F]\right]=f^{-1}\left[f[F]\right]$?

Exercice 14._

 $ledsymbol{
u}$

Soit E, F deux espaces vectoriels, S_1 , S_2 deux sous-espaces vectoriels de E et $u \in \mathcal{L}(E, F)$.

- 1. Montrer que $u[S_1 + S_2] = u[S_1] + u[S_2]$.
- 2. On suppose \mathfrak{u} injective et S_1 et S_2 en somme directe. Montrer que $\mathfrak{u}[S_1 \oplus S_2] = \mathfrak{u}[S_1] \oplus \mathfrak{u}[S_2]$.
- 3. Montrer que l'on ne peut pas se passer de l'hypothèse d'injectivité dans la question précédente.

Exercice 15._

_໔

Soit E un espace vectoriel et f, $g \in \mathcal{L}(E)$.

Montrer que si $im(f + g) = im f \oplus im g$, alors E = ker f + ker g.

Exercice 16.__

_🗹

Soit E un K-espace vectoriel et $f \in \mathcal{L}(E, K)$.

- 1. Montrer que si l'application linéaire f n'est pas nulle, elle est surjective.
- 2. On suppose f non nulle et on fixe $u_0 \in E$ tel que $f(u_0) \neq 0$. Montrer que $E = \ker f \oplus Vect(u_0)$.
- 3. On note $\mathfrak{sl}_n(K) = \{M \in M_n(K) \mid \text{tr } M = 0\}$. A-t-on $M_n(K) = \mathfrak{sl}_n(K) \oplus \text{Vect}(I_n)$?

Exercice 17.

_☑

Soit $f,g\in\mathcal{L}(E,K)$ deux applications linéaires non nulles.

Montrer que $\exists \lambda \in K : g = \lambda f$ si et seulement si ker $f = \ker g$.

Exercice 18._

Soit E un espace vectoriel et $f \in \mathcal{L}(E)$ tel que $f^7 = f$. Montrer que

 $E = \ker f \oplus \operatorname{im} f$.

Exercice 19.

 \mathbf{S}

Soit E un espace vectoriel, $\alpha \neq \beta$ deux scalaires et $f \in \mathcal{L}(E)$ tel que

$$(f - \alpha i d_E) \circ (f - \beta i d_E) = 0. \tag{4}$$

- 1. Déterminer deux réels a et b tels que $a(f \alpha id_E) + b(f \beta id_E) = id_E$.
- 2. En déduire que $E = im(f \alpha id_E) + im(f \beta id_E)$.
- 3. Déduire de (\maltese) que im $(f \beta id_E) \subseteq \ker(f \alpha id_E)$ et que im $(f \alpha id_E) \subseteq \ker(f \beta id_E)$.
- 4. Montrer que $E = \ker(f \alpha id_E) \oplus \ker(f \beta id_E)$.

Exercice 20⁺.__

Soit E et F des espaces vectoriels tels que $E = G \oplus H$. Soit $A = \{u \in \mathcal{L}(E, F) \mid G \subseteq \ker u\}$.

Montrer qu'il s'agit d'un espace vectoriel isomorphe à $\mathcal{L}(H, F)$.

Exercice 21⁺.__

Soit F et G deux sous-espaces vectoriels supplémentaires d'un espace vectoriel E.

Pour toute application $f \in \mathcal{L}(F, G)$, on considère $V_f = \{x + f(x) \mid x \in F\}$.

- 1. Soit S un supplémentaire de F. Montrer que $\forall x \in F, \exists ! y \in G : x + y \in S$.
- 2. Montrer que tout supplémentaire de F est de la forme V_f , pour un unique $f \in \mathcal{L}(F,G)$.
- 3. En déduire que tous les supplémentaires de F sont isomorphes.

L'exercice le plus classique de l'univers

Exercice 22⁺ (Caractérisation des homothéties).

___₽

 \mathbf{V}

Soit $u \in \mathcal{L}(E)$ un endomorphisme tel que, pour tout $x \in E$, les vecteurs x et u(x) soient colinéaires.

Montrer que u est une homothétie.

Projecteurs et symétries

Autocorrection E. Dans
$$\mathbb{R}^3$$
, on pose $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0\}$ et $G = \text{Vect}((1, 1, 3))$.

- 1. Montrer que F et G sont supplémentaires.
- 2. Déterminer la projection sur F parallèlement à G de (2, 2, 3).
- 3. Déterminer la projection sur G parallèlement à F de (1, -2, 0).

Autocorrection F

___✓

Soit f:
$$\begin{cases} \mathbb{R}^3 & \to & \mathbb{R}^3 \\ \begin{pmatrix} x \\ y \\ z \end{pmatrix} & \mapsto \begin{pmatrix} x + 2y \\ 4x - y \\ -2x + 2y + 3z \end{pmatrix}.$$

- 1. Identifier la matrice $A \in M_3(\mathbb{R})$ telle que f soit canoniquement associée à A.
- 2. Calculer A² et en déduire f².
- 3. Montrer que $\frac{1}{3}$ f est une symétrie.
- 4. En déduire que $f \in GL(\mathbb{R}^3)$ et exprimer f^{-1} en fonction de f.

Exercice 23.

Soit E un espace vectoriel et f, $g \in \mathcal{L}(E)$ deux endomorphismes.

- 1. On suppose que g est un projecteur et que ker g et im g sont stables sous f. Montrer que f et g commutent.
- 2. Donner un contre-exemple à la question précédente si on ne suppose plus que g est un projecteur.

Exercice 24.

Soit E un espace vectoriel et $S_1, S_2 \subseteq E$ deux sous-espaces vectoriels supplémentaires. On note p_1 (resp. p_2) le projecteur sur S_1 (resp. S_2) parallèlement à S_2 (resp. S_1) et s_1 (resp. s_2) la symétrie d'axe S_1 parallèlement à S_2 (resp. S_1). Montrer les égalités suivantes.

(i)
$$p_1 + p_2 = id_E$$
;

(iii)
$$s_1 + s_2 = 0$$
;

(ii)
$$p_1 \circ p_2 = p_2 \circ p_1 = 0$$
;

(iv)
$$s_1 \circ s_2 = s_2 \circ s_1 = -id_E$$
.

Exercice 25._

Soit E un espace vectoriel et p, q deux projecteurs de E.

- 1. Montrer que si p et q commutent, alors pq est un projecteur de E.
- 2. Montrer que p + q est un projecteur de E si et seulement si pq = qp = 0 et que dans ce cas, on a $im(p+q) = im p \oplus im q$ et $ker(p+q) = ker p \cap ker q$.

Exercice 26._

Soit E un espace vectoriel et p, $q \in \mathcal{L}(E)$ deux endomorphismes tels que $p + q = id_E$ et pq = 0.

- 1. Montrer que p et q sont des projecteurs et que qp = 0.
- 2. Montrer que im $p = \ker q$ et im $q = \ker p$.

Exercice 27⁺.__

 \mathbf{S}

Soit p et q deux projecteurs d'un espace vectoriel E.

- 1. Montrer que si pq + qp = 0, alors pq = qp = 0.
- 2. En déduire que p q est un projecteur si et seulement si pq = qp = q.

Exercice 28.

_☑

Soit p et q des projecteurs de E tels que pq = 0. On note r = p + q - qp.

- 1. Montrer que r est un projecteur.
- 2. Montrer que im p et im q sont en somme directe, puis que $F = \operatorname{im} p \oplus \operatorname{im} q$ et $G = \ker p \cap \ker q$ sont supplémentaires.
- 3. Montrer que r est le projecteur sur F parallèlement à G.

Exercice 29⁺⁺⁺.____

Soit u et v deux symétries d'un espace vectoriel réel E.

- 1. Montrer que $ker(uv vu) = ker(u + v) \oplus ker(u v)$.
- 2. Montrer que im $(uv vu) = im(u + v) \cap im(u v)$.

Mélange

Exercice 30⁺.__

Soit $u, v \in \mathcal{L}(E)$ deux endomorphismes tels que $u \circ v = v \circ u$ et $\ker u \cap \ker v = \{0_E\}$.

 $\text{Montrer que } \forall i,j \in \mathbb{N}, \text{ker}(\mathfrak{u}^i) \cap \text{ker}(\mathfrak{v}^j) = \{0\}.$

Exercice 31⁺ (Pseudo-inverse d'Azumaya-Drazin).____

₽₹

Soit E un espace vectoriel et $f \in \mathcal{L}(E)$.

On dit que $g \in \mathcal{L}(E)$ est un *pseudo-inverse* de f si $f \circ g = g \circ f$, $f \circ g \circ f = f$, et $g \circ f \circ g = g$.

L'endomorphisme f est dit *pseudo-inversible* s'il admet un pseudo-inverse.

- 1. Montrer que si f est pseudo-inversible, il admet un unique pseudo-inverse. On le notera f^{\sharp} .
- 2. Montrer que si f est inversible (resp. est un projecteur), alors il est pseudo-inversible, et déterminer son pseudo-inverse f^{\sharp} .
- 3. Plus généralement, on suppose $\ker f \oplus \operatorname{im} f = E$. Montrer que f est pseudo-inversible.
- 4. Le but de cette question est de montrer la réciproque de la question précédente. On suppose f pseudo-inversible.
 - (a) Montrer que $f \circ f^{\sharp}$ est un projecteur, de noyau ker f^{\sharp} et d'image im f. Qu'en déduit-on?
 - (b) Montrer que $E = \ker f \oplus \operatorname{im} f$.
- 5. Montrer que f est pseudo-inversible si et seulement si $ker(f) = ker(f^2)$ et $im(f) = im(f^2)$.

Exercice	32^{+}

On note c le sous-espace vectoriel de $\mathbb{R}^\mathbb{N}$ formé des suites convergentes. Pour tout $\mathfrak{n}\in\mathbb{N}$, on note é $\mathfrak{v}_\mathfrak{n}:c\to\mathbb{R}$ la forme linéaire associant à toute suite convergente $\mathfrak{u}\in c$ son élément $\mathfrak{u}_\mathfrak{n}$.

Par abus de notation, on note également é $v_{\infty}:c\to\mathbb{R}$ la forme linéaire associant à toute suite convergente $\mathfrak{u}\in c$ sa limite.

Montrer que la famille $(\acute{e}v_n)_{n\in\mathbb{N}\cup\{\infty\}}$ est libre.

Exercice 33⁺⁺._

Soit $\varphi : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ une forme linéaire telle que pour toute suite $\mathfrak{u}, \varphi(\mathfrak{u})$ soit une valeur prise par \mathfrak{u} .

Montrer qu'il existe $n \in \mathbb{N}$ tel que $\varphi = \acute{e}v_n : u \mapsto u_n$.