Probabilités II

Exercice 3.

Étant donné un entier $x \in \mathbb{Z}$, on pourra commencer par trouver une relation entre x, $\left\lfloor \frac{x}{2} \right\rfloor$ et $(-1)^x$.

Exercice 5.___

En remplaçant E[N] par sa définition, il s'agit de montrer $\sum_{k=1}^{n} k P(N=k) = \sum_{k=1}^{n} P(N \geqslant k)$.

Dans le sens direct, on peut le faire *via* une transformation d'Abel, à partir de la relation (obtenue par additivité) $P(N=k) = P(N \geqslant k) - P(N \geqslant k+1)$. On peut également le faire dans le sens réciproque, en remplaçant $P(N \geqslant k)$ par une somme et en manipulant la somme triangulaire ainsi créée.

Exercice 9.

Pour l'espérance, un résultat du cours conclut directement. Pour la variance, on reviendra à la formule de König-Huygens.

Exercice 10._

On pourra utiliser habilement la positivité de l'espérance.

Exercice 13._

Pour l'espérance, le calcul de E(2n - X) est techniquement plus facile. Pour la variance, on pourra remarquer que celle de X est égale à celle de Y = 2n - X, que l'on peut calculer à l'aide de E(Y(Y+1)).

Exercice 19._

On pourra procéder par récurrence, et utiliser la formule des espérances totales.

L'inégalité élémentaire constituant le cas n = 1 pourra être utile dans la phase d'hérédité.

Exercice 20._

On pourra généraliser n'importe laquelle des preuves déjà vues, par exemple celle (de Schwarz) consistant à remarquer que la fonction polynomiale $\lambda \mapsto E\left[(X+\lambda Y)^2\right]$ est toujours positive, donc que son discriminant est ≤ 0 .

Exercice 34.

La méthode la plus élégante, algébrique, est de remarquer que les égalités $\forall k \in \mathbb{N}, E[X^k] = E[Y^k]$ permettent d'obtenir $\forall P \in \mathbb{R}[X], E[L(X)] = E[L(Y)]$.

Pour tout $z \in \mathbb{R}$, il est alors possible de trouver un polynôme L tel que E[L(X)] = P(X = z) et E[L(Y)] = P(Y = z), en utilisant le fait que im(X) et im(Y) sont des ensembles finis.

1

Autocorrection

Autocorrection A.

On utilise à chaque fois la formule du transfert.

► On a E
$$((X-1)^2)$$
 = $\sum_{k=1}^{n} (k-1)^2 P(X=k) = \frac{1}{n} \sum_{\ell=0}^{n-1} \ell^2 = \frac{(n-1)(2n-1)}{6}$.

• On a E
$$\left(e^{X}\right) = \sum_{k=1}^{n} e^{k} P(X = k) = \frac{e}{n} \sum_{\ell=0}^{n-1} e^{\ell} = \frac{e}{n} \frac{e^{n} - 1}{e - 1}.$$

Autocorrection B._

1. L'énoncé nous apprend qu'il existe une constante de proportionnalité c telle que l'on ait la relation $\forall k \in [1,6], P(X=k)=ck$.

On doit donc avoir
$$1 = \sum_{k=1}^{6} P(X = k) = c \sum_{k=1}^{6} k = 21c$$
, donc $c = \frac{1}{21}$.

La loi de X est donc donnée par la formule $\forall k \in [1, 6], P(X = k) = \frac{k}{21}$

On peut alors calculer l'espérance :
$$E[X] = \sum_{k=1}^{6} k P(X = k) = \frac{1}{21} \sum_{k=1}^{6} k^2 = \frac{91}{21}$$
.

 $\text{2. La loi de Y est donnée par la formule } \forall k \in \llbracket 1, 6 \rrbracket, P\left(Y = \frac{1}{k}\right) = P(X = k) = \frac{k}{21}.$

Par la formule du transfert,
$$E[Y] = E\left[\frac{1}{X}\right] = \sum_{k=1}^{6} \frac{1}{k} P(X=k) = \sum_{k=1}^{6} \frac{1}{21} = \frac{2}{7}$$
.

Autocorrection C.

1. On a d'après la formule du transfert :

$$E[X^2] = \sum_{k=1}^n k^2 P(X = k) = \frac{1}{n} \sum_{k=1}^n k^2 = \frac{(n+1)(2n+1)}{6}$$

$$\text{donc} \qquad V(X) = E[X^2] - E[X]^2 = \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{4} = \frac{n^2 - 1}{12}.$$

2. Si $Y \sim \mathcal{U}(\llbracket a,b \rrbracket)$, on a $Z=Y-(\alpha-1) \sim \mathcal{U}(\llbracket 1,b-\alpha+1 \rrbracket)$ donc, d'après les propriétés de la variance et la question précédente, $E[Y]=E[Z]=\frac{(b-\alpha+1)^2-1}{12}$.

2