Séries

On pourra se souvenir que si une suite converge vers $\alpha > \beta$, alors elle est $> \beta$ à partir d'un certain rang.

Exercice 6.__

On pourra montrer que $x \mapsto \exp(-x^n)$ est convexe, et utiliser cette remarque pour minorer l'intégrale par une suite « en 1/n ».

Exercice 10.

Le développement asymptotique $H_n = \ln n + \gamma + o(1)$ pourra être utile.

Exercice 12.___

On pourra s'inspirer de la méthode générale vue en cours pour calculer $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n}$.

Exercice 21. Comme $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \ell$, à partir d'un certain rang, on a...

Exercice 22.___

On pourra s'inspirer de la démonstration élémentaire, due à Nicolas Oresme, de la divergence de $\sum_{n=1}^{\infty} \frac{1}{n}$ qui s'obtient en « faisant des paquets ».

Pour la deuxième question, on pourra montrer que $\frac{1}{(n+1)^{\alpha-1}} - \frac{1}{n^{\alpha-1}} \sim -\frac{\alpha-1}{n^{\alpha}}$, puis appliquer la question précédente à cette série télescopique.

Autocorrection

Autocorrection A.

Les relations d'équivalence ou de domination données dans la suite sont parfois le fruit d'un calcul non trivial.

- (i) On a $n \sin \left(\frac{1}{n}\right) \xrightarrow[n \to +\infty]{} 1$: la série diverge grossièrement.
- (ii) On a $\left(\frac{n}{2}\right)^n \xrightarrow[n \to +\infty]{'} +\infty$: la série diverge grossièrement.
- (iii) On a $\left(\frac{1}{2}\right)^{\sqrt{n}}=\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^2}\right)$ par croissance comparée : la série converge par comparaison à une série de Riemann (technique standard pour les séries « à l'air exponentiel »).
- (iv) On a $\frac{1}{\sqrt{n}} \ln \left(1 + \frac{1}{\sqrt{n}} \right) \underset{n \to +\infty}{\sim} \frac{1}{n}$: la série diverge par comparaison à une série de Riemann.

- (v) On a $1-\cos\frac{\pi}{n} \sim \frac{\pi^2}{n\to +\infty}$: la série converge par comparaison à une série de Riemann.
- (vi) On a $\frac{(-1)^n+n}{n^2+1} \underset{n \to +\infty}{\sim} \frac{1}{n}$: la série diverge par comparaison à une série de Riemann. (vii) On a $|a^n n!| \xrightarrow[n \to +\infty]{} +\infty$ dès que $a \ne 0$. Ainsi, la série converge (elle est nulle à partir d'un certain rang) si a = 0, et diverge grossièrement dans tous les autres cas.
- (viii) On a $ne^{-\sqrt{n}}=\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^2}\right)$ par croissance comparée : la série converge par comparaison à une série de Riemann (technique standard pour les séries « à l'air exponentiel »).
- (ix) Distinguons trois cas:
 - ▶ si $a \le 0$, la série diverge grossièrement;
 - ▶ si $0 < \alpha \leqslant 1$, on a $\frac{1}{n} = \underset{n \to +\infty}{o} \left(\frac{\ln n}{n^{\alpha}} \right)$, et la série diverge par comparaison à une série de
 - ▶ si a > 1, on peut trouver un réel 1 < b < a, et on a $\frac{\ln n}{n^a} = \int_{n \to +\infty}^{0} \left(\frac{1}{n^b}\right)$ (par croissance comparée) : la série converge par comparaison à une série de Riemann.
- (x) On a $\ln\left(\frac{n^2+n+1}{n^2+n-1}\right) \underset{n\to+\infty}{\sim} \frac{2}{n^2}$: la série converge par comparaison à une série de Riemann.
- (xi) On a $\frac{\ln(n^2+3)\sqrt{2^n+1}}{4^n} = \mathop{o}_{n\to+\infty}\left(\frac{1}{n^2}\right)$: la série converge par comparaison à une série de Riemann (technique standard pour les séries « à l'air exponentiel »).
- (xii) On a $\frac{\ln n}{\ln(e^n-1)} \sim \frac{\ln n}{n \to +\infty} \frac{\ln n}{n}$, donc $\frac{1}{n} = \mathop{o}_{n \to +\infty} \left(\frac{\ln n}{\ln(e^n-1)}\right)$: la série diverge par comparaison à une série de Riemann.
- (xiii) On a $\sqrt{\cosh\frac{1}{n}-1} \underset{n\to+\infty}{\sim} \frac{1}{n}$: la série diverge par comparaison à une série de Riemann.
- (xiv) On a $\left(\frac{n}{n+1}\right)^{n^2} = \mathop{o}_{n\to+\infty}\left(\frac{1}{n^2}\right)$: la série converge par comparaison à une série de Riemann séries « à l'air exponentiel »).
- (xv) On a $\left(n\sin\frac{1}{n}\right)^{n^{\alpha}} = \exp\left[-\frac{1}{6}n^{\alpha-2} + o(n^{\alpha-2})\right]$. On montre alors que la série diverge grossièrement si $\alpha \leqslant 2$ et qu'elle converge si $\alpha > 2$ car son terme général est alors $\underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)$ (technique standard pour les séries « à l'air exponentiel »).
- (xvi) On a $\sqrt[3]{n^3 + \alpha n} \sqrt{n^2 + 3} = \left(\frac{\alpha}{3} \frac{3}{2}\right) \frac{1}{n} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2}\right).$

▶ si $a \neq \frac{9}{2}$, le terme général est équivalent à $\underbrace{\left(\frac{a}{3} - \frac{3}{2}\right)}_{n}$, et la série diverge par comparaison

à une série de Riemann;

- ightharpoonup si $a=rac{9}{2}$, le terme général est $\underset{n \to +\infty}{o}\left(rac{1}{n^2}\right)$, et la série converge par comparaison à une série
- (xvii) On a $e^{1/n} a \frac{b}{n} = (1 a) + \frac{1 b}{n} + O_{n \to +\infty} \left(\frac{1}{n^2}\right)$. Ainsi,
 - ▶ si $a \neq 1$, le terme général tend vers $1 a \neq 0$, et la série diverge grossièrement;
 - ▶ si a = 1 et $b \neq 1$, le terme général est équivalent à $\frac{1-b}{n}$, et la série diverge par comparaison à une série de Riemann;

▶ si a = b = 1, le terme général est $\underset{n \to +\infty}{O} \left(\frac{1}{n^2}\right)$, et la série converge par comparaison à une série de Riemann.

Remarque : il était habile d'effectuer un développement du terme général avec un terme d'erreur en $\underset{n \to +\infty}{O} \left(\frac{1}{n^2} \right)$ plutôt que d'écrire un terme en $\frac{*}{n^2}$ (qui n'aurait pas eu d'importance) puis un terme d'erreur en $\underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right)$.

(xviii) Le terme général est équivalent à $2\frac{\ln(n)}{n^{\alpha}}$. Ainsi, en reprenant le résultat d'une question précédente, la série converge si et seulement si $\alpha > 1$.

Autocorrection B.

1. Soit $n \ge 1$. La comparaison série-intégrale (cas décroissant) donne

$$\int_{n+1}^{2n+1} \frac{dt}{\sqrt{t}} \leqslant \sum_{k=n+1}^{2n} \frac{1}{\sqrt{k}} \leqslant \int_{n+1}^{2n+1} \frac{dt}{\sqrt{t}} + \left(\frac{1}{\sqrt{2n+1}} - \frac{1}{\sqrt{n+1}}\right)$$

donc

$$\sum_{k=n+1}^{2n} \frac{1}{\sqrt{k}} = \int_{n+1}^{2n+1} \frac{dt}{t} + O\left(\frac{1}{\sqrt{n}}\right)$$
$$= \left[2\sqrt{t}\right]_{t=n+1}^{2n} + o(\sqrt{n}).$$

Or,

$$\left[2\sqrt{t}\right]_{t=n+1}^{2n} = 2\left(\sqrt{2n+1} - \sqrt{n+1}\right) = 2\underbrace{\left(\sqrt{\frac{2n+1}{n}} - \sqrt{\frac{n+1}{n}}\right)}_{n \to \infty} \sqrt{n} \underset{n \to \infty}{\sim} 2\left(\sqrt{2} - 1\right)\sqrt{n},$$

d'où l'on tire

$$\sum_{k=n+1}^{2n} \frac{1}{\sqrt{k}} \underset{n \to \infty}{\sim} 2\left(\sqrt{2} - 1\right) \sqrt{n}.$$

Remarque. Il serait aussi possible de modifier un peu la comparaison série-intégrale du cours pour simplifier les calculs ultérieurs : l'inégalité

$$\forall k\geqslant 2, \int_{k}^{k+1}\frac{dt}{\sqrt{t}}\leqslant \frac{1}{\sqrt{k}}\leqslant \int_{k-1}^{k}\frac{dt}{\sqrt{t}}$$

donne, pour tout $n \ge 1$,

$$\int_{n}^{2n} \frac{dt}{\sqrt{t}} + \frac{1}{\sqrt{2n}} - \frac{1}{\sqrt{n}} \leqslant \sum_{k=n+1}^{2n-1} \int_{k}^{k+1} \frac{dt}{\sqrt{t}} + \frac{1}{\sqrt{2n}} \leqslant \sum_{k=n+1}^{2n} \frac{1}{\sqrt{k}} dt \leqslant \sum_{k=n+1}^{2n} \int_{k-1}^{k} \frac{dt}{\sqrt{t}} = \int_{n}^{2n} \frac{1}{\sqrt{t}} dt,$$

d'où l'on tire
$$\sum_{k=n+1}^{2n} \frac{1}{\sqrt{k}} = \int_{n}^{2n} \frac{dt}{\sqrt{t}} + O\left(\frac{1}{\sqrt{n}}\right) = 2\left(\sqrt{2} - 1\right)\sqrt{n} + O\left(\frac{1}{\sqrt{n}}\right) \underset{n \to \infty}{\sim} 2\left(\sqrt{2} - 1\right)\sqrt{n}.$$

Deuxième remarque. On peut aussi effectuer un « changement d'échelle » intelligent pour se ramener à une somme de Riemann (ce qui est un autre type de comparaison série-intégrale) :

$$\frac{1}{\sqrt{n}} \sum_{k=n+1}^{2n} \frac{1}{\sqrt{k}} = \frac{1}{n} \sum_{k=n+1}^{2n} \frac{1}{\sqrt{\frac{k}{n}}} = \frac{1}{n} \sum_{\ell=1}^{n} \frac{1}{\sqrt{1+\frac{\ell}{n}}} \xrightarrow[n \to +\infty]{} \int_{0}^{1} \frac{dt}{\sqrt{1+t}} = 2\left(\sqrt{2}-1\right).$$

2. Soit $n \ge 2$. Par comparaison série-intégrale,

$$\int_{2}^{n+1} \frac{dt}{t \ln t} \leq \sum_{k=2}^{n} \frac{1}{k \ln k} \leq \int_{2}^{n+1} \frac{dt}{t \ln t} + \frac{1}{2 \ln 2} - \frac{1}{(n+1) \ln(n+1)} \leq \int_{2}^{n+1} \frac{dt}{t \ln t} + \frac{1}{2 \ln 2},$$

donc (avec une petite idée pour se simplifier les calculs)

$$\sum_{k=2}^{n} \frac{1}{k \ln k} = \int_{2}^{n+1} \frac{dt}{t \ln t} + O(1) = \int_{2}^{n} \frac{dt}{t \ln t} + \underbrace{\int_{n}^{n+1} \frac{dt}{t \ln t}}_{=O\left(\frac{1}{n \ln(n)}\right) = O(1)}_{=O(1)} + O(1) = \int_{2}^{n} \frac{dt}{t \ln t} + O(1).$$

Or,

$$\int_{2}^{n} \frac{dt}{t \ln t} = [\ln(\ln t)]_{t=2}^{n} = \ln(\ln n) - \ln \ln 2 = \ln(\ln n) + O(1).$$

In fine,

$$\sum_{k=2}^{n} \frac{1}{k \ln k} = \int_{2}^{n} \frac{dt}{t \ln t} + O(1) = \ln(\ln n) + O(1) \underset{n \to \infty}{\sim} \ln(\ln n).$$