Espaces euclidiens

Exercice 8.

On pourra montrer l'identité du parallélogramme généralisée : $\frac{1}{2^n}\sum_{\epsilon\in\{\pm 1\}^n}\left\|\sum_{i=1}^n\epsilon_iu_i\right\|^2=\sum_{i=1}^n\|u_i\|^2.$

Exercice 12.

Faire un dessin!

Exercice 14.

On pourra procéder par récurrence et démontrer que quand on projette une famille obtusangle « dans la bonne direction », la famille projetée reste obtusangle (et les angles deviennent même plus obtus).

Exercice 24.

On pourra trouver une manière de modifier la définition de F, de telle sorte qu'un vecteur normal à F devienne immédiatement apparent.

Exercice 28.

On pourra s'intéresser à tr $Mat_{\mathcal{B}}(\mathfrak{p})$.

Exercice 31.__

Étant donné un hyperplan H de \mathbb{R}^n , on pourra commencer par montrer que $\sum_{k=1}^n d(e_k, H)^2 = 1$.

Autocorrection

Autocorrection A._

On vérifie successivement les axiomes.

Positivité. Pour tout $P \in \mathbb{R}[X]$, on a $\langle P|P \rangle = \int_0^1 P(t)^2 dt \ge 0$.

Caractère défini. Soit $P \in \mathbb{R}[X]$ tel que $\langle P|P \rangle = 0$.

On a donc $\int_0^1 P(t)^2 dt = 0$. La fonction polynomiale $t \mapsto P(t)^2$ étant positive et continue, on en déduit que $\forall t \in [0,1], P(t) = 0$ par stricte positivité de l'intégrale.

D'après le critère radical de nullité, on en déduit P = 0.

Symétrie. La symétrie est claire.

Bilinéarité. La bilinéarité de $\langle \cdot | \cdot \rangle$ est une conséquence directe de la linéarité de l'intégrale : pour tous $P, Q_1, Q_2 \in \mathbb{R}[X]$ et $\lambda \in \mathbb{R}$, on a

$$\langle P|Q_1 + \lambda Q_2 \rangle = \int_0^1 \big(P(t) \, Q_1(t) + \lambda \, P(t) \, Q(t) \big) dt = \int_0^1 P(t) \, Q_1(t) \, dt + \lambda \int_0^1 P(t) \, Q_2(t) \, dt = \langle P|Q_1 \rangle + \lambda \, \langle P|Q_2 \rangle \, .$$

(Remarquons que la symétrie dispense de vérifier la linéarité par rapport à la première variable.)

1

1. D'après l'inégalité de Cauchy-Schwarz dans l'espace euclidien \mathbb{R}^n :

$$\sum_{k=0}^n \sqrt{\binom{n}{k}} \times 1 \leqslant \sqrt{\sum_{k=1}^n \binom{n}{k}} \, \sqrt{\sum_{k=0}^n 1^2} = 2^{n/2} \, \sqrt{n+1}.$$

2. Soit $A \in M_n(\mathbb{R})$. Pour le produit scalaire canonique sur $M_n(\mathbb{R})$, on a $tr(A) = tr(I_n^T A) = \langle I_n | A \rangle$. D'après l'inégalité de Cauchy-Schwarz, on a donc

$$|\langle I_n | A \rangle| \leqslant ||I_n|| \, ||A|| = \sqrt{n} \, ||A||.$$

3. Il y a beaucoup de manières de montrer ce résultat, mais il suffit par exemple d'appliquer l'inégalité de Cauchy-Schwarz (sous la forme $\langle y|z\rangle^2 \leqslant \|y\|^2 \|z\|^2$) dans l'espace euclidien \mathbb{R}^n à deux vecteurs bien choisis :

$$n^2 = \left(\sum_{k=1}^n 1\right)^2 = \left(\sum_{k=1}^n \sqrt{x_k} \frac{1}{\sqrt{x_k}}\right) \leqslant \left(\sum_{k=1}^n x_k\right) \left(\sum_{k=1}^n \frac{1}{x_k}\right).$$

Autocorrection C.

Il suffit de se souvenir que $\underbrace{p(x)}_{\in F} \perp \underbrace{x - p(x)}_{\in F^{\perp}}$, donc

$$d(x,F)^2 = \|x - p(x)\|^2 = \langle x - p(x)|x - p(x)\rangle = \langle x|x - p(x)\rangle + \underbrace{\langle p(x)|x - p(x)\rangle}_{=0}.$$

Autocorrection D.

- (i) Il s'agit, dans $C^0([0,1])$ muni du produit scalaire canonique, de trouver la distance au carré de $i:t\mapsto t$ au plan $F=Vect(r:t\mapsto \sqrt{t},u:t\mapsto 1)$.
 - ► Le projeté orthogonal de i sur F est l'unique élément ar + bu de F faisant avec les éléments de F les mêmes produits scalaires que i, c'est-à-dire

$$\begin{cases} \langle \alpha r + b u | u \rangle = \langle i | u \rangle \\ \langle \alpha r + b u | r \rangle = \langle i | r \rangle \end{cases} \quad \text{ce qui \'equivaut \`a} \quad \begin{cases} \frac{2}{3} \alpha + \ b = \frac{1}{2} \\ \frac{1}{2} \alpha + \frac{2}{3} b = \frac{2}{5}. \end{cases}$$

Après résolution du système, on trouve que le projeté est $p = \frac{6}{5}r - \frac{3}{10}u : t \mapsto \frac{6}{5}\sqrt{t} - \frac{3}{10}$.

► La distance au carré cherchée est donc

$$\begin{split} \inf_{(\alpha,b)\in\mathbb{R}^2} \int_0^1 \left(t - (\alpha\sqrt{t} + b)\right)^2 dt &= \|i - p\|^2 \\ &= \langle i - p|i - p\rangle \\ &= \langle i|i - p\rangle \\ &= \int_0^1 t \left(t - \left(\frac{6}{5}\sqrt{t} - \frac{3}{10}\right)\right) \\ &= \frac{1}{300}. \end{split}$$

- (ii) On procède de même (ou de même que dans le cours). On cherche ici la distance au carré de X^3 à $F = \mathbb{R}_2[X]$ dans l'espace $\mathbb{R}[X]$, muni du produit scalaire canonique.
 - ► En résolvant le système $\begin{cases} a + \frac{b}{2} + \frac{c}{3} = \frac{1}{4} \\ \frac{a}{2} + \frac{b}{3} + \frac{c}{4} = \frac{1}{5} \text{ (traduisant que } a + bX + cX^2, \text{ le projeté orthogonal cherché, possède les mêmes produits scalaires « contre » les éléments de F que le$

thogonal cherché, possède les mêmes produits scalaires « contre » les éléments de F que le polynôme X^3), on obtient que le projeté orthogonal de X^3 sur $\mathbb{R}_2[X]$ est $\frac{3}{2}X^2 - \frac{3}{5}X + \frac{1}{20}$.

► Cela donne la distance au carré cherchée :

$$\begin{split} \inf_{(a,b,c)\in\mathbb{R}^2} \int_0^1 \left(t^3 - (\alpha+bt+ct^2)\right)^2 dt &= \|t\mapsto t^3 - (\alpha+bt+ct^2)\|^2 \\ &= \left\langle t\mapsto t^3 - (\alpha+bt+ct^2) \Big| t\mapsto t^3 \right\rangle \quad \text{(Pythagore)} \\ &= \frac{1}{2\,800}. \end{split}$$