Deuxième composition de mathématiques [corrigé]

Exercice 1. Interro de calcul du vendredi.

1. Soit $x \in \mathbb{R}$. Linéariser $\cos(x)^6$.

On a

$$\begin{split} \cos(x)^6 &= \left(\frac{e^{\mathrm{i}x} + e^{-\mathrm{i}x}}{2}\right)^6 \\ &= \frac{1}{2^6} \big(e^{\mathrm{i}6x} + 6e^{\mathrm{i}4x} + 15e^{\mathrm{i}2x} + 20 + 15e^{-\mathrm{i}2x} + 6e^{-\mathrm{i}4x} + e^{-\mathrm{i}6x}\big) \quad \text{(binôme de Newton)} \\ &= \frac{1}{2^5} \big(\cos(6x) + 6\cos(4x) + 15\cos(2x) + 10\big) \\ &= \frac{1}{32} \cos(6x) + \frac{3}{16} \cos(4x) + \frac{15}{32} \cos(2x) + \frac{5}{16}. \end{split}$$

 $\text{2.}\quad \text{(a) Montrer } \forall \ell \in \mathbb{Z}, \frac{1+(-1)^\ell}{2} = \mathbb{1}_{(\ell \text{ pair})}.$

Soit $\ell \in \mathbb{Z}$.

► Si
$$\ell$$
 est pair, on a $(-1)^{\ell} = 1$ donc $\frac{1 + (-1)^{\ell}}{2} = 1$.

► Si
$$\ell$$
 est impair, on a $(-1)^{\ell} = -1$ donc $\frac{1 + (-1)^{\ell}}{2} = 0$.

Dans les deux cas, on a donc $\frac{1+(-1)^{\ell}}{2}=\mathbb{1}_{(\ell \ pair)}$.

(b) Soit
$$q \in \mathbb{C}$$
 et $n \in \mathbb{N}$. Calculer $\sum_{\substack{k \in [0,n]\\ k \text{ pair}}} \binom{n}{k} q^k$.

D'après la question précédente,

$$\begin{split} \sum_{\substack{k \in [\![0,n]\!] \\ k \; pair}} \binom{n}{k} \, q^k &= \sum_{k=0}^n \mathbb{1}_{(k \; pair)} \binom{n}{k} \, q^k \\ &= \sum_{k=0}^n \frac{1 + (-1)^k}{2} \, \binom{n}{k} \, q^k \\ &= \frac{1}{2} \sum_{k=0}^n \binom{n}{k} q^k + \frac{1}{2} \sum_{k=0}^n \underbrace{(-1)^k \, q^k}_{=(-q)^k} \\ &= \frac{1}{2} (1 + q)^n + \frac{1}{2} (1 - q)^n, \end{split}$$

d'après le binôme de Newton.

3. Soit $n \in \mathbb{N}^*$. Calculer les sommes doubles :

(a)
$$\sum_{1\leqslant i,j\leqslant n}ij^2$$
, (b) $\sum_{1\leqslant i\leqslant j\leqslant n}(2i-1)j$.

▶ La première somme est rectangulaire et à variables séparées, ce qui permet de la factoriser :

$$\begin{split} \sum_{1 \leqslant i,j \leqslant n} i \, j^2 &= \left(\sum_{i=1}^n i \right) \left(\sum_{j=1}^n j^2 \right) \\ &= \frac{n(n+1)}{2} \cdot \frac{n(n+1)(2n+1)}{6} \\ &= \frac{n^2(n+1)^2(2n+1)}{12}. \end{split}$$

▶ La deuxième somme est triangulaire, et on la traite comme telle :

$$\begin{split} \sum_{1\leqslant i\leqslant j\leqslant n} (2i-1)j &= \sum_{j=1}^n \sum_{i=1}^j (2i-1)\,j \\ &= \sum_{j=1}^n j \sum_{i=1}^j (2i-1) \\ &= \sum_{j=1}^n j \cdot \left(j \cdot \frac{1+(2j-1)}{2}\right) \qquad \text{(somme arithm\'etique, par exemple)} \\ &= \sum_{j=1}^n j^3 \\ &= \frac{n^2(n+1)^2}{4}. \end{split}$$

Exercice 2

1. Soit E un ensemble et $f: E \to E$ une application. Montrer, par double implication :

$$f \circ f = f \Leftrightarrow \forall y \in f[E], f(y) = y.$$

Sens direct. *Supposons* $f \circ f = f$.

Soit $y \in f[E]$.

On peut donc trouver $x \in E$ tel que y = f(x).

On en déduit $f(y) = f(f(x)) = (f \circ f)(x) = f(x) = y$, ce qui conclut.

Sens réciproque. Supposons $\forall y \in f[E], f(y) = y$.

Montrons $f \circ f = f$.

- ▶ Les (co)domaines sont les bons : les deux fonctions sont $E \rightarrow E$.
- ▶ *Soit* $x \in E$.

En appliquant l'hypothèse à y = f(x), qui appartient bien à f[E], on obtient f(y) = y, c'est-à-dire f(f(x)) = f(x), c'est-à-dire $(f \circ f)(x) = f(x)$.

2. Soit E, F et G trois ensembles et f : E \rightarrow F, g : F \rightarrow G deux applications. Montrer l'équivalence

$$g \circ f \text{ injective} \Leftrightarrow \begin{cases} f \text{ injective} \\ g_{|f[E]} \text{ injective}. \end{cases}$$

On procède par double implication.

Sens direct. *Supposons* $g \circ f$ *injective.*

- ► Le cours garantit déjà que f est injective.
- ▶ *Montrons* $g_{|f[E]}$ *injective.*

Soit $y_1, y_2 \in f[E]$ tels que $g_{|f[E]}(y_1) = g_{|f[E]}(y_2)$, c'est-à-dire tels que $g(y_1) = g(y_2)$.

Comme $y_1 \in f[E]$, on peut trouver $x_1 \in E$ tel que $y_1 = f(x_1)$. De même, on peut trouver $x_2 \in E$ tel que $y_2 = f(x_2)$.

On a ainsi $(g \circ f)(x_1) = g(y_1) = g(y_2) = (g \circ f)(x_2)$, donc $x_1 = x_2$, par injectivité de $g \circ f$.

On en déduit $y_1 = f(x_1) = f(x_2) = y_2$, ce qui conclut.

Sens réciproque. *Supposons* f *et* $g_{|f[E]}$ *injectives, et montrons* $g \circ f$ *injective.*

Soit
$$x_1, x_2 \in E$$
 tels que $(g \circ f)(x_1) = (g \circ f)(x_2)$.

On a donc $g(f(x_1)) = g(f(x_2))$.

Comme $f(x_1)$ et $f(x_2)$ appartiennent à f[E], on peut réécrire cette égalité $g_{|f[E]}(f(x_1)) = g_{|f[E]}(f(x_2))$.

Par injectivité de $g_{|f[E]}$, on en déduit $f(x_1) = f(x_2)$.

Par injectivité de f, on en déduit $x_1 = x_2$, ce qui conclut.

- $3. \ Soit \ f: \mathbb{R} \to \mathbb{R} \ et \ (A_n)_{n \in \mathbb{N}} \ une \ suite \ de \ parties \ de \ \mathbb{R} \ telle \ que \ \bigcup_{n \in \mathbb{N}} A_n = \mathbb{R} \ et \ \forall n \in \mathbb{N}, A_n \subseteq A_{n+1}.$
 - (a) Montrer que f est croissante si et seulement si pour tout $n \in \mathbb{N}$, la restriction de f à A_n est croissante.
 - ► Supposons f croissante.

Soit $n \in \mathbb{N}$. *Montrons que* $f_{|A_n}$ *croît.*

Soit $x_1, x_2 \in A_n$ tels que $x_1 \leq x_2$.

Par croissance de f, on a $f(x_1) \leqslant f(x_2)$, c'est-à-dire $f_{|A_n}(x_1) \leqslant f_{|A_n}(x_2)$.

▶ Supposons que, pour tout $n \in \mathbb{N}$, la restriction $f_{|A_n}$ soit croissante. Montrons que f croît.

Soit $x_1 \le x_2$ *deux réels.*

$$\textit{Comme} \bigcup_{n \in \mathbb{N}} A_n = \mathbb{R}, \textit{on peut trouver} \ n_1, n_2 \in \mathbb{N} \textit{ tels que } x_1 \in A_{n_1} \textit{ et } x_2 \in A_{n_2}.$$

Une démonstration par récurrence (très semblable à ce que l'on a fait sur les suites strictement croissantes au devoir précédent!), montre que l'hypothèse $\forall n \in \mathbb{N}, A_n \subseteq A_{n+1}$ entraı̂ne la propriété de « croissance » $\forall p,q \in \mathbb{N}, p \leqslant q \Rightarrow A_p \subseteq A_q$.

En notant $N=\max(n_1,n_2)$, on a $n_1\leqslant N$ et $n_2\leqslant N$, donc $A_{n_1}\subseteq A_N$ et $A_{n_2}\subseteq A_N$. On en déduit que x_1 et x_2 sont tous deux éléments de A_N .

Comme $f_{|A_N|}$ croît, on a $f_{|A_N|}(x_1) \leqslant f_{|A_N|}(x_2)$, c'est-à-dire $f(x_1) \leqslant f(x_2)$, ce qui conclut.

(b) Construire un exemple de suite $(A_n)_{n\in\mathbb{N}}$ et de fonction $f:\mathbb{R}\to\mathbb{R}$ montrant que la question précédente devient fausse en remplaçant « croissante » par « bornée ».

Considérons, pour tout $n \in \mathbb{N}$, $A_n = [-n, n]$ et $f = id_{\mathbb{R}}$.

- ▶ Il est assez clair que $\forall n \in \mathbb{N}, A_n \subseteq A_{n+1}$.
- Une démonstration très proche du cours montre que $\bigcup_{n\in\mathbb{N}}A_n=\mathbb{R}.$
- ▶ Montrons que pour tout $n \in \mathbb{N}$, la restriction de f à A_n soit bornée.

Soit $n \in \mathbb{N}$. Montrons $\exists C \in \mathbb{R} : \forall x \in A_n, |f_{|A_n}(x)| \leqslant n$.

Candidat : C = n.

- On a bien $C \in \mathbb{R}$.
- Pour tout $x \in A_n$, on $a |f_{|A_n}(x)| = |f(x)| = |x| \le n$.
- ▶ Montrons que f n'est pas bornée, c'est-à-dire que $\forall C \in \mathbb{R} : \exists x \in \mathbb{R} : |f(x)| > C$. Soit $C \in \mathbb{R}$.

Candidat: x = |C| + 1.

- On a bien $x \in \mathbb{R}$ (et même $x \in [1, +\infty[)$.
- On $a |f(x)| = ||C| + 1| = |C| + 1 > |C| \ge C$.

Exercice 3

On considère l'application $\phi: \left\{ egin{aligned} \mathscr{P}(\mathbb{N}) & & \mathscr{P}(\mathbb{N})^2 \\ A & \mapsto \left(\left\{ n \in \mathbb{N} \,\middle|\, 2n \in A \right\}, \left\{ n \in \mathbb{N} \,\middle|\, 2n + 1 \in A \right\} \right). \end{aligned} \right.$

1. Montrer que l'application φ est bijective.

Injectivité. Soit $X_1, X_2 \in \mathscr{P}(\mathbb{N})$ tel que $\varphi(X_1) = \varphi(X_2)$. On en déduit

$$\begin{array}{ll} P_1 := \left\{ n \in \mathbb{N} \,\middle|\, 2n \in X_1 \right\} &= \left\{ n \in \mathbb{N} \,\middle|\, 2n \in X_2 \right\} =: P_2 \\ I_1 := \left\{ n \in \mathbb{N} \,\middle|\, 2n + 1 \in X_1 \right\} = \left\{ n \in \mathbb{N} \,\middle|\, 2n + 1 \in X_2 \right\} =: I_2 \end{array}$$

Montrons $X_1 = X_2$, par double inclusion.

Inclusion directe. *Soit* $x \in X_1$. *On distingue deux cas.*

- Si x est pair, on peut trouver m ∈ N tel que x = 2m.
 Par définition de P₁, cela signifie que m ∈ P₁. On en déduit que m ∈ P₂, c'est-à-dire que x = 2m ∈ X₂.
- ▶ $Si \ x \ est \ impair$, on peut trouver $m \in \mathbb{N}$ $tel \ que \ x = 2m + 1$.

On a de même $m \in I_1$, donc $m \in I_2$, donc $x = 2m + 1 \in X_2$.

On a ainsi montré $X_1 \subseteq X_2$.

Inclusion réciproque. Par symétrie, X_1 et X_2 jouant des rôles parfaitement symétriques, on montre de même l'inclusion $X_2 \subseteq X_1$.

Surjectivité. *Soit* $Y = (P, I) \in \mathcal{P}(\mathbb{N})^2$. *Montrons* $\exists X \in \mathcal{P}(\mathbb{N}) : \varphi(X) = (P, I)$.

Candidat: $X = \{2n \mid n \in P\} \cup \{2n + 1 \mid n \in I\}.$

- ▶ On a manifestement $X \in \mathcal{P}(\mathbb{N})$.
- $\blacktriangleright \ \textit{Montrons} \ \phi(X) = (P,I), \textit{c'est-\`a-dire} \ \big\{ n \in \mathbb{N} \ \big| \ 2n \in X \big\} = P \ \textit{et} \ \big\{ n \in \mathbb{N} \ \big| \ 2n+1 \in X \big\} = I.$
 - Montrons la première égalité, par double inclusion.
 - $\quad \rhd \ \textit{Soit} \ \mathfrak{m} \in \big\{ \mathfrak{n} \in \mathbb{N} \ \big| \ 2\mathfrak{n} \in X \big\}.$

On a donc $2m \in X$. Par définition de $X = \{2n \mid n \in P\} \cup \{2n+1 \mid n \in I\}$, on distingue deux cas.

 $\circ Si\ 2m \in \{2n \mid n \in P\}$, on peut trouver $n \in P$ tel que 2m = 2n.

On en déduit m = n, puis $m \in P$.

 \circ Si $2m \in \{2n+1 \mid n \in I\}$, on peut trouver $n \in I$ tel que 2m = 2n+1. Mais cette égalité est absurde (les deux nombres n'ont pas la même parité) donc ce cas ne se produit en fait pas.

Ainsi, $m \in P$.

 \triangleright Réciproquement, soit $m \in P$.

On a donc $2m \in \{2n \mid n \in P\}$, donc a fortiori $2m \in X$.

Ainsi, $\mathfrak{m} \in \{\mathfrak{n} \in \mathbb{N} \mid 2\mathfrak{n} \in X\}.$

• L'égalité $\{n \in \mathbb{N} \mid 2n+1 \in X\} = I$ se démontre exactement de la même façon.

Cela conclut la démonstration de la bijectivité de φ.

2. Déterminer les parties $A \in \mathscr{P}(\mathbb{N})$ telles que $\varphi(A) = (A, A)$.

Il est relativement clair que $\phi(\emptyset)=(\emptyset,\emptyset)$ et $\phi(\mathbb{N})=(\mathbb{N},\mathbb{N})$. On va montrer que ce sont les deux seules parties qui conviennent.

Pour ce faire, soit $A \in \mathcal{P}(\mathbb{N})$ *telle que* $\varphi(A) = (A, A)$. *Cela signifie exactement*

$$\{n \in \mathbb{N} \mid 2n \in A\} = A = \{n \in \mathbb{N} \mid 2n + 1 \in A\},$$

c'est-à-dire la double équivalence

$$\forall n \in \mathbb{N}, 2n \in A \Leftrightarrow n \in A \Leftrightarrow 2n+1 \in A.$$
 (4)

On va supposer A non vide et montrer $A = \mathbb{N}$. D'après le résultat admis dans l'indication, on sait que A possède un plus petit élément, que l'on va noter \mathfrak{m} .

Étape 1. Montrons m = 0. On distingue pour ce faire deux cas.

- ▶ Si m est pair, on peut trouver $n \in \mathbb{N}$ tel que m = 2n. D'après (♣), l'entier n appartient aussi à A, donc $2n = m \le n$. On en déduit $n \le 0$, c'est-à-dire n = 0, puis m = 0.
- ▶ Si m est impair, on peut trouver $n \in \mathbb{N}$ tel que m = 2n + 1. D'après (♣), l'entier n appartient aussi à A, donc $2n + 1 = m \le n$. On en déduit $n \le -1$, une absurdité. Ainsi, ce cas ne se produit pas.

On a donc montré m = 0.

Étape 2. L'inclusion $A \subseteq \mathbb{N}$ étant automatique, il suffit de montrer $\mathbb{N} \subseteq A$.

Pour $n \in \mathbb{N}$, *on note* P(n) *l'assertion* « $n \in A$ ». *Montrons* $\forall n \in \mathbb{N}$, P(n) *par récurrence forte.*

Initialisation. D'après l'étape précédente, le plus petit élément de A est 0. A fortiori, $0 \in A$, ce qui montre P(0).

Hérédité. Soit $n \in \mathbb{N}$ tel que $P(0), P(1), \dots, P(n)$ soient vraies. Montrons P(n + 1). On distingue deux cas.

▶ Si n + 1 est pair, on peut trouver m ∈ \mathbb{N} tel que n + 1 = 2m. Cela entraîne que m est non nul (sinon, n + 1 = 0, absurde), donc m < 2m = n + 1, puis m \leq n.

Ainsi, P(m) est vraie, c'est-à-dire que $m \in A$. D'après (\clubsuit), $n+1=2m \in A$.

▶ $Si \ n + 1 \ est \ impair$, on peut trouver $m \in \mathbb{N}$ tel que n + 1 = 2m + 1.

Comme $0 \le 2m < 2m + 1$, on a P(2m) c'est-à-dire $2m \in A$. Grâce à (♣), on en déduit l'appartenance $n + 1 = 2m + 1 \in A$.

Dans les deux cas, on a montré $n + 1 \in A$, ce qui montre P(n + 1), et clôt la récurrence.

Problème. Module d'une somme de nombres complexes.

Partie I. Retour sur l'inégalité triangulaire.

- 1. Dans cette question, on propose une autre démonstration de l'inégalité triangulaire. Il est donc interdit de l'utiliser!
 - (a) Montrer $\forall z \in \mathbb{C}, |z+1| \leq |z|+1$.

Soit $z \in \mathbb{C}$, que l'on écrit a + ib sous forme algébrique. On a

$$\begin{split} |z+1|^2 &= (a+1)^2 + b^2 = a^2 + 2a + 1 + b^2 \\ donc \quad \left(|z|+1\right)^2 &= \left(\sqrt{a^2+b^2}+1\right)^2 = a^2 + b^2 + 2\sqrt{a^2+b^2} + 1 \\ donc \quad \left(|z|+1\right)^2 - |z+1|^2 &= 2\left(\sqrt{a^2+b^2}-a\right). \end{split}$$

Or, $a \leq |a| = \sqrt{a^2} \leq \sqrt{a^2 + b^2}$, par croissance de $\sqrt{\cdot}$.

Cela montre $(|z|+1)^2 - |z+1|^2 \ge 0$, c'est-à-dire $|z+1|^2 \le (|z|+1)^2$.

On conclut par croissance de $\sqrt{\cdot}$.

(b) En utilisant la question précédente et la propriété $\forall u, v \in \mathbb{C}, |uv| = |u||v|$, donner une nouvelle démonstration de l'inégalité triangulaire $\forall z, w \in \mathbb{C}, |z+w| \leq |z|+|w|$.

Soit $z, w \in \mathbb{C}$.

- ▶ $Si \ w = 0$, l'inégalité $|z + w| \le |z| + |w|$ est évidente (et c'est une égalité).
- Sinon, on écrit $|z+w| = \left|w\left(\frac{z}{w}+1\right)\right| = |w|\left|\frac{z}{w}+1\right|$.

D'après la question précédente, $\left|\frac{z}{w}+1\right| \leqslant \left|\frac{z}{w}\right|+1=\frac{|z|}{|w|}+1$.

En multipliant de part et d'autre par le nombre positif |w|, on obtient $|z+w| \leq |z| + |w|$.

Comme on l'a vu en cours, cela entraîne, par une récurrence immédiate, la généralisation à plusieurs termes $\forall n \in \mathbb{N}, \forall z_1, \dots, z_n \in \mathbb{C}, \left|\sum_{k=1}^n z_k\right| \leqslant \sum_{k=1}^n |z_k|$, que l'on pourra utiliser librement.

- 2. Somme signée : deux vecteurs. Soit $z, w \in \mathbb{C}$.
 - (a) Exprimer $|z+w|^2$ à l'aide notamment de Ré $(\bar{z}w)$.

On a

$$|z+w|^2 = (z+w)\overline{(z+w)} = (z+w)(\overline{z}+\overline{w}) = z\overline{z} + \underbrace{z\overline{w}+w\overline{z}}_{=\overline{z}w+\overline{z}w} + w\overline{w} = |z|^2 + 2\operatorname{Re}(\overline{z}w) + |w|^2.$$

(b) Utiliser la formule précédente pour simplifier $|z+w|^2 + |z-w|^2$.

En utilisant deux fois la question précédente,

$$|z+w|^{2} + |z-w|^{2} = (|z|^{2} + 2\operatorname{R\acute{e}}(\overline{z}w) + |w|^{2}) + (|z|^{2} + 2\operatorname{R\acute{e}}(\overline{z}(-w)) + |-w|^{2})$$

$$= 2|z|^{2} + 2|w|^{2} + 2\operatorname{R\acute{e}}(\overline{z}w) - 2\operatorname{R\acute{e}}(\overline{z}w)$$

$$= 2|z|^{2} + 2|w|^{2}.$$

(c) En déduire l'existence d'un signe $\varepsilon \in \{\pm 1\}$ tel que $|z + \varepsilon w| \le \sqrt{|z|^2 + |w|^2} \le |z - \varepsilon w|$.

Les deux nombres $\left|z\pm w\right|^2$ ont pour moyenne $|z|^2+|w|^2$, d'après la question précédente. On en déduit

$$\min(|z+w|^2, |z-w|^2) \le |z|^2 + |w|^2 \le \max(|z+w|^2, |z-w|^2).$$

Si l'on note $\varepsilon \in \{\pm 1\}$ le signe tel que $|z + \varepsilon w|^2$ soit le plus petit des deux nombres, cette inégalité se réécrit

$$|z + \varepsilon w|^2 \le |z|^2 + |w|^2 \le |z - \varepsilon w|^2$$

et on conclut par croissance de $\sqrt{\cdot}$.

3. Premier cas extrême (annulation). Soit $n \ge 2$. Trouver

Notons $(z_k)_{k=1}^n$ les racines n-ièmes de l'unité : pour tout $k \in [1, n]$, on écrit $z_k = \exp\left(i\frac{2\pi}{n}k\right)$. Comme $\exp\left(i\frac{2\pi}{n}0\right) = 1 = \exp\left(i\frac{2\pi}{n}n\right)$, le fait de les numéroter de 1 à n (et non pas de 0 à n-1, comme le veut la tradition) n'a aucune importance.

Il s'agit de nombres complexes de module 1. D'après le cours, $\sum_{k=1}^n z_k = \sum_{\omega \in \mathbb{U}_n} \omega = 0$, car $n \geqslant 2$.

4. Deuxième cas extrême (balistique). Montrer que

$$\forall n \geqslant 2, \forall z_1, \ldots, z_n \in \mathbb{U}, \left| \sum_{k=1}^n z_k \right| = \sum_{k=1}^n |z_k| \Rightarrow z_1 = z_2 = \cdots = z_n.$$

Pour tout $n \ge 2$, on note P(n) l'assertion

$$\forall z_1,\ldots,z_n\in\mathbb{U}, \left|\sum_{k=1}^n z_k\right|=\sum_{k=1}^n |z_k|\Rightarrow z_1=z_2=\cdots=z_n.$$

Montrons $\forall n \ge 2$, P(n) *par récurrence.*

Initialisation. Soit $z_1, z_2 \in \mathbb{U}$ tels que $|z_1 + z_2| = |z_1| + |z_2|$ (= 2). D'après le cas d'égalité de l'inégalité triangulaire, on en déduit que z_1 et z_2 sont positivement colinéaires. Comme $z_1 \neq 0$, cela se traduit par l'existence de $\lambda \in \mathbb{R}_+$ tel que $z_2 = \lambda z_1$.

En passant au module, on obtient $|\lambda|=1$. Comme λ est un réel positif, on en déduit $\lambda=1$, c'est-à-dire $z_1=z_2$.

Cela conclut la démonstration de P(2).

Hérédité. *Soit* $n \ge 2$ *tel que* P(n)*. Montrons* P(n + 1)*.*

Soit
$$z_1, \ldots, z_{n+1} \in \mathbb{U}$$
 tels que $\left| \sum_{k=1}^{n+1} z_k \right| = \sum_{k=1}^{n+1} \left| z_k \right| (=n+1)$.

$$\textit{Posons } w = \sum_{k=1}^n z_k. \; \textit{L'inégalité triangulaire entraîne que } |w| = \left| \sum_{k=1}^n z_k \right| \leqslant \sum_{k=1}^n \left| z_k \right| = n.$$

Or,
$$n+1 = \left| \sum_{k=1}^{n+1} z_k \right| = \left| w + z_{n+1} \right| \le |w| + \left| z_{n+1} \right| \le n+1.$$

Cela entraı̂ne que les deux inégalités dans cette chaı̂ne sont des égalités, c'est-à-dire que |w|=n et que w et z_{n+1} sont positivement colinéaires.

En comparant les modules, cela entraı̂ne que $w = n z_{n+1}$.

Par ailleurs, l'égalité |w|=n et l'assertion P(n) montrent que $z_1=\cdots=z_n$.

L'égalité $w = n z_{n+1}$ montre alors que $n z_n = n z_{n+1}$, c'est-à-dire $z_n = z_{n+1}$.

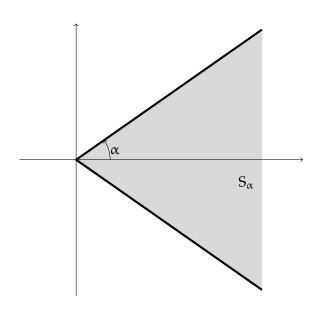
On a donc montré $z_1 = \cdots = z_n = z_{n+1}$.

Cela conclut la démonstration de P(n + 1), et donc la récurrence!

Partie II. Vecteurs dans un secteur angulaire.

On fixe
$$\alpha \in \Big[0,\frac{\pi}{2}\Big[\text{ et on note } S_\alpha = \Big\{r\,e^{i\theta}\,\Big|\, r \in \mathbb{R}_+, \theta \in [-\alpha,\alpha]\Big\}.$$

5. Dessiner l'ensemble S_{α} .



6. Montrer que $\forall z \in S_{\alpha}$, $Ré(z) \ge \cos(\alpha) |z|$.

Soit $z \in S_{\alpha}$. On peut donc trouver $r \in \mathbb{R}_+$ et $\theta \in [-\alpha, \alpha]$ (si bien que r = |z|).

On en déduit Ré $z = r \cos(\theta)$.

Or, comme $\alpha \leqslant \frac{\pi}{2}$, la fonction cosinus est croissante sur $[-\alpha,0]$, puis décroissante sur $[0,\alpha]$. On en déduit que $\cos(\theta) \geqslant \min(\cos(-\alpha),\cos(\alpha)) = \cos\alpha$.

En multipliant cette inégalité par le nombre positif r, on a Ré $z = r \cos(\theta) \geqslant r \cos(\alpha) = \cos(\alpha) |z|$.

$$7. \ \text{Soit} \ n\geqslant 1 \ \text{et} \ z_1,\dots,z_n\in S_\alpha. \ \text{Montrer} \ \left|\sum_{k=1}^n z_k\right|\geqslant \cos(\alpha) \ \sum_{k=1}^n \left|z_k\right|.$$

On a

$$\left| \sum_{k=1}^{n} z_{k} \right| \geqslant \operatorname{R\acute{e}} \sum_{k=1}^{n} z_{k} \qquad (\operatorname{car} \forall w \in \mathbb{C}, \operatorname{R\acute{e}} w \leqslant |w|)$$

$$\geqslant \sum_{k=1}^{n} \operatorname{R\acute{e}}(z_{k})$$

$$\geqslant \sum_{k=1}^{n} \cos(\alpha) |z_{k}| \qquad (\operatorname{question} \operatorname{pr\acute{e}c\acute{e}dente})$$

$$\geqslant \cos(\alpha) \sum_{k=1}^{n} |z_{k}|.$$

Partie III. Minoration d'une moyenne.

Dans cette section, on note $\psi: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto |cos(x)| + |sin(x)|. \end{cases}$

- 8. Symétries.
 - (a) La fonction ψ est-elle paire? Est-elle impaire?
 - ▶ *La fonction* ψ *est paire. Montrons-le.*

Soit $x \in \mathbb{R}$. On a

$$\psi(-x) = |\cos(-x)| + |\sin(-x)| = |\cos(x)| + |-\sin(x)| = |\cos(x)| + |\sin(x)| = \psi(x).$$

- ▶ La fonction ψ n'est pas impaire. En effet, $\psi(0) = 1$, alors que toute fonction impaire g définie sur \mathbb{R} vérifie g(0) = g(-0) = -g(0), donc g(0) = 0.
- (b) Trouver un nombre réel T > 0 tel que ψ soit T-périodique, mais pas (T/2)-périodique.

Candidat: $T = \frac{\pi}{2}$ (qui est bien > 0).

► La fonction ψ est $\frac{\pi}{2}$ -périodique. Montrons-le.

Soit $x \in \mathbb{R}$. On a

$$\psi\left(x+\frac{\pi}{2}\right) = \left|\cos\left(x+\frac{\pi}{2}\right)\right| + \left|\sin\left(x+\frac{\pi}{2}\right)\right| = \left|-\sin(x)\right| + \left|\cos(x)\right| = \psi(x).$$

► La fonction n'est pas $\frac{\pi}{4}$ -périodique. En effet,

$$\psi\left(\frac{\pi}{4}\right) = \left|\cos\left(\frac{\pi}{4}\right)\right| + \left|\sin\left(\frac{\pi}{4}\right)\right| = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \sqrt{2} \neq 1 = \psi(0).$$

9. Trouver $A \in \mathbb{R}_+$ et $\phi \in \mathbb{R}$ tels que $\forall x \in \mathbb{R}, \cos(x) + \sin(x) = A \cos(x + \phi)$.

Candidats: $A = \sqrt{2}$ et $\varphi = -\frac{\pi}{4}$ (obtenus après un calcul au brouillon dont nul ne pourra jamais vérifier la rigueur logique).

Soit $x \in \mathbb{R}$. *On a, d'après les formules d'addition :*

$$A\cos(x + \varphi) = \sqrt{2}\cos\left(x - \frac{\pi}{4}\right)$$
$$= \sqrt{2}\left(\cos(x)\cos\left(\frac{\pi}{4}\right) + \sin(x)\sin\left(\frac{\pi}{4}\right)\right)$$
$$= \cos(x) + \sin(x),$$

$$car \cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}.$$

10. Déduire de ce qui précède la minoration $\forall x \in \mathbb{R}, \psi(x) \ge 1$.

Soit $x \in \mathbb{R}$.

Le segment $\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$ étant de longueur $\frac{\pi}{2}$, on peut trouver $x_0 \in \left[-\frac{\pi}{4},\frac{\pi}{4}\right]$ tel que $x \equiv x_0 \pmod{\pi/2}$.

On en déduit

$$\begin{split} \psi(x) &= \psi(x_0) & (\textit{car} \; \psi \; \textit{est} \; \frac{\pi}{2} \textit{-p\'eriodique}) \\ &= \psi(\left|x_0\right|) & \textit{car} \; \psi \; \textit{est paire} \\ &= \sqrt{2} \cos\left(\left|x_0\right| - \frac{\pi}{4}\right). \end{split}$$

 $\text{Or, } |x_0| \in \left[0, \frac{\pi}{4}\right] \text{, donc } |x_0| - \frac{\pi}{4} \in \left[-\frac{\pi}{4}, 0\right] \text{, donc } \cos\left(|x_0| - \frac{\pi}{4}\right) \in \left[\frac{1}{\sqrt{2}}, 1\right] \text{ par croissance de la fonction cosinus sur le segment } \left[-\frac{\pi}{4}, 0\right].$

On en déduit $\psi(x)\in \left[1,\sqrt{2}\right]$, ce qui montre en particulier $\psi(x)\geqslant 1.$

11. Montrer que $\forall x \in \mathbb{R}, \frac{1}{4} \sum_{\ell=0}^{3} \left| \cos \left(x + \ell \frac{\pi}{2} \right) \right| \geqslant \frac{1}{2}$.

Soit $x \in \mathbb{R}$. On a

$$\sum_{\ell=0}^{3} \left| \cos \left(x + \ell \frac{\pi}{2} \right) \right| = \left| \cos(x) \right| + \left| \cos \left(x + \frac{\pi}{2} \right) \right| + \left| \cos(x + \pi) \right| + \left| \cos \left(x + \frac{3\pi}{2} \right) \right|$$

$$= \left| \cos(x) \right| + \left| -\sin(x) \right| + \left| -\cos(x) \right| + \left| \sin(x) \right|$$

$$= 2\psi(x) \geqslant 2,$$

donc
$$\frac{1}{4} \sum_{\ell=0}^{3} \left| \cos \left(x + \ell \frac{\pi}{2} \right) \right| \geqslant \frac{1}{2}.$$

Partie IV. Somme signée de vecteurs : expansion.

Dans cette partie, on fixe $n \ge 1$ et n nombres complexes z_1, \ldots, z_n . Le but est de montrer qu'il existe des signes $\varepsilon_1, \ldots, \varepsilon_n \in \{\pm 1\}$ tels que $\left| \sum_{k=1}^n \varepsilon_k \, z_k \right| \ge \frac{1}{2} \sum_{k=1}^n \left| z_k \right|$.

On fixe quelques notations:

- lacksquare pour tout indice $k\in \llbracket 1,n \rrbracket$, soit $r_k\in \mathbb{R}_+$ et $\theta_k\in \mathbb{R}$ tels que $z_k=r_k\,e^{i\,\theta_k}$;
- ▶ soit $\varepsilon_1, \ldots, \varepsilon_n \in \{\pm 1\}$ tels que le complexe $Z_{max} := \sum_{k=1}^n \varepsilon_k \, z_k$ ait le plus grand module possible.
- 12. Soit $u \in \mathbb{U}$.

(a) Montrer qu'il existe
$$\zeta_1, \ldots, \zeta_n \in \{\pm 1\}$$
 tels que $\sum_{k=1}^n \left| \text{R\'e}(\mathfrak{u} z_k) \right| = \text{R\'e}\left(\mathfrak{u} \sum_{k=1}^n \zeta_k z_k\right)$.

Pour tout $k \in [1,n]$, la quantité $R\acute{e}(u\,z_k)$ est un nombre réel, donc on peut trouver $\zeta_k \in \{\pm 1\}$ (son signe s'il est non nul, n'importe lequel sinon) tel que ζ_k $R\acute{e}(u\,z_k) \geqslant 0$.

Comme on n'a pas changé la valeur absolue du nombre en le multipliant par ± 1 , on a donc bien construit, pour tout $k \in [1, n]$, un signe $\zeta_k \in \{\pm 1\}$ tel que ζ_k $R\acute{e}(\mathfrak{u}\,z_k) = |R\acute{e}(\mathfrak{u}\,z_k)|$.

Ainsi,

$$\begin{split} \text{R\'e}\left(u\sum_{k=1}^{n}\zeta_{k}\,z_{k}\right) &= \text{R\'e}\sum_{k=1}^{n}\zeta_{k}\,u\,z_{k} & \textit{(lin\'earit\'e de la somme)} \\ &= \sum_{k=1}^{n}\zeta_{k}\,\operatorname{R\'e}(u\,z_{k}) & \mathbb{R}\text{-lin\'earit\'e de R\'e} \\ &= \sum_{k=1}^{n}\big|\text{R\'e}(u\,z_{k})\big|. \end{split}$$

(b) En déduire
$$\sum_{k=1}^{n} \left| Ré(u z_k) \right| \leq |Z_{max}|$$
.

D'après la question précédente et l'inégalité de Cauchy-Schwarz,

$$\sum_{k=1}^n \left| R\acute{e}(\mathfrak{u}\,z_k) \right| = R\acute{e}\left(\mathfrak{u}\,\sum_{k=1}^n \,\zeta_k\,z_k\right) \overset{CS}{\leqslant} \left| \overline{\mathfrak{u}} \right| \left| \sum_{k=1}^n \,\zeta_k\,z_k \right| \leqslant \left| \sum_{k=1}^n \,\zeta_k\,z_k \right|.$$

Or, par définition de Z_{max} , ce dernier module est $\leq \left|\sum_{k=1}^n \epsilon_k z_k\right| = \left|Z_{max}\right|$.

13. Montrer
$$\forall t \in \mathbb{R}, \sum_{k=1}^{n} r_k \left| cos(t + \theta_k) \right| \leqslant \left| Z_{max} \right|.$$

Soit $t \in \mathbb{R}$. Le nombre $u = e^{it}$ est de module 1 et, pour tout $k \in [\![1,n]\!],$

$$\begin{split} R\acute{e}(u\,z_k) &= R\acute{e}\left[e^{it}\left(r_k\,e^{i\theta_k}\right)\right] = r_k\;R\acute{e}\left[e^{i(t+\theta_k)}\right] = r_k\;\cos(t+\theta_k)\\ \textit{donc} & \left|R\acute{e}(u\,z_k)\right| = r_k\left|\cos(t+\theta_k)\right|. \end{split}$$

En appliquant à ce nombre complexe l'inégalité de la question précédente, on a donc

$$\left|Z_{\max}\right| \geqslant \sum_{k=1}^{n} \left|R\acute{e}(uz_k)\right| = \sum_{k=1}^{n} r_k \left|\cos(t+\theta_k)\right|.$$

14. En utilisant l'inégalité de la partie précédente, en déduire $\left|Z_{max}\right| \geqslant \frac{1}{2} \sum_{k=1}^{n} r_k$.

Pour tout $\ell \in [0,3]$, on peut appliquer l'assertion de la question précédente à $t=\ell \frac{\pi}{2}$ et obtenir

$$\sum_{k=1}^n r_k \left| \cos \left(\theta_k + \ell \frac{\pi}{2} \right) \right| \leqslant \left| Z_{max} \right|.$$

En sommant ces inégalités (ou plutôt en en faisant la moyenne), on obtient donc

$$\frac{1}{4} \sum_{\ell=0}^{3} \sum_{k=1}^{n} r_k \left| \cos \left(\theta_k + \ell \frac{\pi}{2} \right) \right| \leqslant |Z_{\text{max}}|.$$

Or, on peut échanger les symboles somme :

$$\frac{1}{4}\sum_{\ell=0}^{3}\sum_{k=1}^{n}r_{k}\left|\cos\left(\theta_{k}+\ell\frac{\pi}{2}\right)\right|=\sum_{k=1}^{n}r_{k}\underbrace{\frac{1}{4}\sum_{\ell=0}^{3}\left|\cos\left(\theta_{k}+\ell\frac{\pi}{2}\right)\right|}_{\geqslant 1/2}\geqslant\frac{1}{2}\sum_{k=1}^{n}r_{k},$$

ce qui fournit l'inégalité attendue $\frac{1}{2}\sum_{k=1}^n r_k = \frac{1}{2}\sum_{k=1}^n \left|z_k\right| \leqslant \left|Z_{max}\right|.$

Remarque. En remplaçant l'inégalité de la partie précédente par l'égalité $\frac{1}{2\pi} \int_0^{2\pi} \left| \cos(t) \right| dt = \frac{2}{\pi}$, on pourrait remplacer la constante $\frac{1}{2}$ par $\frac{2}{\pi} \approx 0,637$, qui est optimale.

Partie V. Somme signée de vecteurs : confinement.

Dans cette partie, on fixe $n \ge 1$ et n nombres complexes z_1, \ldots, z_n . Le but est de montrer qu'il existe des signes $\varepsilon_1, \ldots, \varepsilon_n \in \{\pm 1\}$ tels que $\left| \sum_{k=1}^n \varepsilon_k \, z_k \right| \le \sqrt{2} \, \max \left(\left| z_1 \right|, \ldots, \left| z_n \right| \right)$.

15. Démontrer le résultat annoncé dans le cas n = 2.

Soit $z_1, z_2 \in \mathbb{C}$. Notons $M = max(|z_1|, |z_2|)$.

D'après la question 2c, on peut trouver $\varepsilon \in \{\pm 1\}$ *tel que*

$$|z_1 + \varepsilon z_2| \leqslant \sqrt{|z_1|^2 + |z_2|^2} \leqslant \sqrt{2M^2} \leqslant \sqrt{2} M,$$

par croissance des fonctions $t\mapsto t^2$ (sur \mathbb{R}_+) et $\sqrt{\cdot}$.

Cela démontre le résultat (en prenant $\varepsilon_1 = 1$ et $\varepsilon_2 = \varepsilon$).

16. (a) Soit $r \in [0, 1]$ et $\theta \in \left[-\frac{\pi}{3}, \frac{\pi}{3} \right]$. Montrer que $\left| 1 - r e^{i\theta} \right| \leqslant 1$.

On a

$$1 - \left| 1 - r e^{i\theta} \right|^2 = 1 - \left(1 - r e^{i\theta} \right) \left(1 - r e^{-i\theta} \right)$$
$$= 1 - \left[1 - r \left(e^{i\theta} + e^{-i\theta} \right) + r^2 \right]$$

$$= 1 - (1 - 2r \cos(\theta) + r^2)$$

$$= 2r \cos(\theta) - r^2$$

$$= \underbrace{r}_{\geqslant 0} (2\cos(\theta) - r).$$

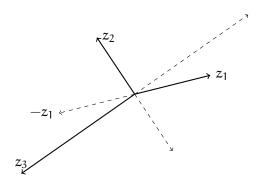
$$\textit{Or,}\ \theta \in \left[-\frac{\pi}{3}, \frac{\pi}{3}\right], \textit{donc}\ cos(\theta) \in \left\lceil\frac{1}{2}, 1\right\rceil, \textit{donc}\ 2\cos(\theta) - r \geqslant 0.$$

Cela entraı̂ne $\left|1-r\,e^{i\theta}\right|^2\leqslant 1$, et on conclut par croissance de $\sqrt{\cdot}.$

(b) Soit $z_1, z_2, z_3 \in \mathbb{C}$ de module ≤ 1 .

Montrer qu'il existe deux indices distincts $k \neq \ell$ dans $\{1, 2, 3\}$ et un signe $\zeta \in \{\pm 1\}$ tels que l'on ait $|z_k + \zeta z_\ell| \leq 1$.

L'énoncé est trivial si l'un des vecteurs est nul, donc on suppose dans la suite que ça n'est pas le cas. En considérant les $\pm z_k$, on a donc six nombres complexes, que l'on peut voir comme six vecteurs du plan.



Le point-clef est que le plus petit angle apparaissant sur cette figure vaut au plus un sixième de tour. Rédigeons cela précisément (peut-être un peu trop?).

On écrit ces six nombres sous forme exponentielle : on peut trouver $0 \leqslant \theta_1 < \theta_2 < \dots < \theta_6 < 2\pi$ et $r_1, \dots, r_6 > 0$ tels que les six nombres soient les éléments de la famille $\left(r_k \, \theta_k\right)_{k=1}^6$ (dans un certain ordre).

Remarquons que les différences $\alpha_1 = \theta_2 - \theta_1, \dots, \alpha_5 = \theta_6 - \theta_5$ et $\alpha_6 = (2\pi + \theta_1) - \theta_6$ s'interprètent comme les mesures des angles délimités par nos vecteurs.

Il s'agit de six nombres positifs dont la somme est (par télescopage) précisément 2π . Le plus petit des six, que l'on note β , vaut donc au plus $\frac{2\pi}{6} = \frac{\pi}{3}$.

Naturellement, cet angle n'est pas celui entre un vecteur de la forme z_k et son opposé (qui vaut toujours π) : on a donc trouvé $k \neq \ell$ et deux signes $\eta_k, \eta_\ell \in \{\pm 1\}$ tels que nos deux nombres s'écrivent sous la forme $\eta_k z_k$ et $\eta_\ell z_\ell$. On a donc $\arg(\eta_\ell z_\ell) - \arg(\eta_k z_k) \equiv \beta \pmod{2\pi}$.

Quitte à les échanger (ce qui remplacera l'angle β par son opposé), on suppose que $|z_k|\geqslant |z_\ell|$. Le quotient $\frac{\eta_\ell\,z_\ell}{\eta_k\,z_k}$ est donc un nombre complexe de module $r\leqslant 1$ et d'argument $\theta:=\pm\beta\in\left[-\frac{\pi}{3},\frac{\pi}{3}\right]$.

En utilisant la question précédente, on obtient

$$\left|\eta_k z_k - \eta_\ell z_\ell\right| = \left|\eta_k z_k \left(1 - \frac{\eta_\ell z_\ell}{\eta_k z_k}\right)\right| = \left|z_k\right| \left|1 - r e^{i\theta}\right| \leqslant \left|z_k\right| \leqslant 1.$$

Comme $|\eta_k z_k - \eta_\ell z_\ell| = |\eta_k^2 z_k - \eta_k \eta_\ell z_\ell| = |z_k - \eta_k \eta_\ell z_\ell|$, on obtient le résultat voulu, en posant $\zeta = \eta_k \eta_\ell \in \{\pm 1\}$.

17. Conclure.

Pour tout $n \ge 2$, *on note* P(n) *l'assertion* :

quels que soient $z_1, \ldots, z_n \in \mathbb{C}$, de module ≤ 1 , on peut trouver des signes $\epsilon_1, \ldots, \epsilon_n \in \{\pm 1\}$ tels que $\left| \sum_{k=1}^n \epsilon_k \, z_k \right| \leq \sqrt{2}$.

Nous allons montrer $\forall n \ge 2$, P(n) *par récurrence.*

Initialisation. Soit $z_1, z_2 \in \mathbb{C}$, de module ≤ 1 . D'après la question 15, on peut trouver $\varepsilon_1, \varepsilon_2 \in \{\pm 1\}$ tels que $\left| \sum_{k=1}^n \varepsilon_k z_k \right| \leq \sqrt{2} \max(|z_1|, |z_2|) \leq \sqrt{2}$, ce qui montre P(2).

Hérédité. *Soit* $n \ge 2$ *tel que* P(n). *Soit* $z_1, \ldots, z_n, z_{n+1} \in \mathbb{C}$, *de module* ≤ 1 .

La question précédente nous donne $k \neq \ell \in [1, n+1]$ et $\zeta \in \{\pm 1\}$ tels que $|z_k + \zeta z_\ell| \leq 1$.

Quitte à permuter les nombres complexes (ce qui ne change pas la difficulté de l'énoncé à démontrer), on va supposer pour simplifier k=n et k+1=n+1. Notons enfin $w=z_n+\zeta z_{n+1}$.

D'après P(n), appliquée à z_1,\ldots,z_{n-1},w , on peut alors trouver $\epsilon_1,\ldots,\epsilon_{n-1},\epsilon_n\in\{\pm 1\}$ tels que

$$\left|\sum_{k=1}^{n-1}\varepsilon_k z_k + \varepsilon_n w\right| \leqslant \sqrt{2}.$$

En remplaçant w par sa valeur, on obtient donc

$$\left|\sum_{k=1}^{n-1} \varepsilon_k z_k + \varepsilon_n z_n + \zeta \varepsilon_n z_{n+1}\right| \leqslant \sqrt{2},$$

ce qui conclut, en posant $\varepsilon_{n+1} = \zeta \varepsilon_n \in \{\pm 1\}$.

On a donc montré P(n + 1), ce qui clôt la récurrence.

Revenons maintenant à l'énoncé : soit $n \ge 1$ et $z_1, \ldots, z_n \in \mathbb{C}$ et notons $M = \max(|z_1|, \ldots, |z_n|)$.

- ▶ $Si \ n = 1$, l'énoncé est immédiat, car $M = |z_1|$ et $1 \le \sqrt{2}$. On peut d'ailleurs choisir n'importe lequel des deux signes.
- ightharpoonup Si M = 0, tous les vecteurs sont nuls et l'énoncé à démontrer est presque insultant.
- ▶ On peut donc supposer $n \ge 2$ et M > 0.

Les vecteurs $\dot{z}_k := \frac{z_k}{M}$ (pour $k \in [\![1,n]\!]$) sont tous de module $\leqslant 1$, donc on peut utiliser P(n): on peut trouver $\epsilon_1, \ldots, \epsilon_n \in \{\pm 1\}$ tels que $\left|\sum_{k=1}^n \epsilon_k \dot{z}_k\right| \leqslant \sqrt{2}$.

En multipliant de part et d'autre par M, on obtient $\left|\sum_{k=1}^n \epsilon_k z_k\right| \leqslant \sqrt{2} \, M$, ce qui conclut.