Nombres complexes

Généralités

Autocorrection A.

 \mathbf{V}

Écrire chacun des nombres complexes suivants sous forme algébrique, et calculer son module.

(i)
$$\frac{1}{i}$$
;

(iv)
$$\frac{(2+3i)^2}{4-2i}$$
;

(vii)
$$\frac{2+5i}{1-i} + \frac{2-5i}{1+i}$$
;

(ii)
$$\frac{1+i}{1-i}$$
;

(v)
$$\frac{1+i\sqrt{3}}{\sqrt{3}-i};$$

(viii)
$$\frac{2}{1-i\sqrt{3}}$$
;

(iii)
$$\frac{1+2i}{1-3i}$$
;

(vi)
$$\left(\frac{1+i}{2-i}\right)^2$$
;

(ix)
$$\frac{(5-i)^6}{(3+2i)^5}$$

Autocorrection B.

 \mathbf{V}

Résoudre les équations suivantes dans \mathbb{C} .

(i)
$$3z - (3 - i)\overline{z} = 1 - 2i$$
;

(ii)
$$2z + 6\overline{z} = 3 + 2i$$
;

(iii)
$$(3+4i)z-5\overline{z}=2i$$
.

Exercice 1._

₽₹

Trouver tous les nombres complexes z tels que $(z-2)(\overline{z}+i) \in \mathbb{R}$.

₽₹

L'assertion $\exists (a, b) \in \mathbb{C}^2 : \forall z \in \mathbb{C}, \overline{z} = az + b$ est-elle vraie ou fausse?

Exercice 3⁺._

Soit $\alpha \in \mathbb{C}$. Donner une condition nécessaire et suffisante sur α pour que l'on ait l'équivalence

$$\forall (x,y) \in \mathbb{R}^2, x + \alpha y = 0 \Leftrightarrow x = y = 0.$$

 \mathbf{V}

Exercice 4. On note $S = \{ n^2 + m^2 \mid (n, m) \in \mathbb{Z}^2 \}.$

- 1. Exhiber un entier naturel n'appartenant pas à δ .
- 2. En utilisant la formule $\forall z, z' \in \mathbb{C}, \left|zz'\right|^2 = \left|z\right|^2 \left|z'\right|^2$, montrer que \mathbb{S} est stable par produit, c'est-àdire que $\forall p, q \in S, pq \in S$.
- 3. On pose $S' = \left\{ n^2 + m^2 + o^2 \, \middle| \, (n,m,o) \in \mathbb{Z}^3 \right\}$. Montrer que $15 \not\in S'$ et en déduire que S' n'est pas stable par produit.

Exercice 5. En utilisant $j=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$, montrer que $\left\{ a^{2}-ab+b^{2}\,\middle|\, (a,b)\in\mathbb{Z}^{2}\right\}$ est stable par produit.

Exercice 6. Soit α , b et $c \in \mathbb{Z}$ tels que $\alpha b + bc + c\alpha = 1$. Montrer que $(1 + \alpha^2)(1 + b^2)(1 + c^2)$ est un carré parfait.

Équations du second degré

Autocorrection C.

 \mathbf{V}

Déterminer les racines carrées des nombres suivants.

- (i) i;

- (ii) 3-4i; (iii) 8-6i; (iv) 24-10i; (v) 1+2i.

Autocorrection D._

 \mathbf{V}

Soit $m \in \mathbb{R}^*$. Résoudre, dans \mathbb{C} , les équations suivantes.

(i) $z^2 + z + 1 = 0$;

(iv) $4z^2 - 16z + 11 - 12i = 0$;

(ii) $z^2 - 2iz + 2 - 4i = 0$;

(v) $z^4 - (5 - 14i)z^2 - 2(5i + 12) = 0$;

(iii) $z^2 - 2iz - 1 + 2i = 0$:

(vi) $mz^4 + (m-i)z^2 - i = 0$.

Autocorrection E.____

V

Autocorrection E. Trouver les couples $(x,y) \in \mathbb{C}^2$ satisfaisant les systèmes d'équations suivants.

(i) $\begin{cases} x+y=2\\ xy=2, \end{cases}$ (ii) $\begin{cases} x+y=3i\\ xy=-1-3i, \end{cases}$

(iii) $\begin{cases} x + y = 3 + 4i \\ xy = 5 + 15i, \end{cases}$ (iv) $\begin{cases} x + y = 1 + i \\ xy = 2. \end{cases}$

Exercice 7._____

Déterminer les $\mathfrak{m} \in \mathbb{R}$ tels que l'équation

$$z^{3} + (3+i)z^{2} - 3z - (m+i) = 0$$
 (E_m)

ait au moins une solution réelle.

Exercice 8.

Ŷ

Résoudre les équations suivantes, d'inconnue $z \in \mathbb{C}$.

(i)
$$z^4 - 6z^2 + 25 = 0$$
;

(ii)
$$z^4 - (3+2i)z^2 + 8 - 6i = 0$$
.

Relations coefficients-racines (pour les polynômes du second degré)

Exercice 9.

 \mathbf{V}

Soit $z \in \mathbb{C} \setminus \mathbb{R}$. Trouver $p, q \in \mathbb{R}$ tels que $z^2 + pz + q = 0$.

Exercice 10⁺.__

Soit p et q deux nombres complexes, avec $q \neq 0$. On suppose que les deux racines de $X^2 - pX + q^2$ ont le même module.

Exprimer le quotient $\frac{p^2}{q^2}$ en fonction des deux racines, et en déduire que $\frac{p}{q} \in \mathbb{R}$.

Exponentielle complexe

Autocorrection F._

 \mathbf{V}

Soit $\theta \in \mathbb{R}$. Mettre les nombres complexes suivants sous forme exponentielle.

(i)
$$2 - 2i$$

(iii)
$$1 + j$$
;

(v)
$$e^{e^{i\theta}}$$
;

(ii)
$$\frac{-1 + i\sqrt{3}}{\sqrt{3} + i}$$
;

(iv)
$$e^{i\theta} + e^{2i\theta}$$
;

(vi)
$$1 + \cos \theta + i \sin \theta$$
.

Autocorrection G.
Calculer $\frac{(1-i)^{10}(\sqrt{3}+i)^5}{(1-i)^{3/2}(10)}$.

Autocorrection H.

 \mathbf{V}

 \mathbf{V}

Soit $z = \sqrt{3} + i$. Déterminer les entiers $n \in \mathbb{N}$ tels que z^n soit dans \mathbb{R} (resp. \mathbb{R}_- , resp. $i\mathbb{R}_+$.)

Exercice 11.

 \mathbf{V}

Calculer les expressions suivantes (on pourra présenter les résultats sous forme exponentielle).

(i)
$$\left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^{666}$$
;

(iv)
$$\frac{(1+i)^4}{(1-i)^3} + \frac{(1-i)^4}{(1+i)^3}$$
;

(ii)
$$(1+i)^{18}$$
;

(v)
$$(1+j)^n$$
 (pour $n \in \mathbb{N}$);

(iii)
$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$$
;

(vi)
$$(1+i\sqrt{3})^n + (1-i\sqrt{3})^n$$
.

Exercice 12.

₽

Montrer

$$(2+i\sqrt{5})^7+(2-i\sqrt{5})^7\in\mathbb{R}\qquad\text{et}\qquad\forall n\in\mathbb{N}, \left(\frac{19+7i}{9-i}\right)^n+\left(\frac{20+5i}{7+6i}\right)^n\in\mathbb{R}.$$

Exercice 13⁺._

$$1. \ \, \text{Montrer} \ \, \forall n \in \mathbb{N}, \left(\frac{11+7i}{3+5i}\right)^n + \left(\frac{5-5i}{1-3i}\right)^n \in \mathbb{R}.$$

2. Soit z et $\zeta \in \mathbb{C}$. Montrer que $(\forall n \in \mathbb{N}, z^n + \zeta^n \in \mathbb{R}) \Leftrightarrow (z, \zeta \in \mathbb{R} \text{ ou } z = \overline{\zeta})$.

Exercice 14.__

Soit $\theta_1, \theta_2 \in \mathbb{R}$ et $z_1 = e^{i\theta_1}, z_2 = e^{i\theta_2}$.

Calculer $\frac{z_1 + z_2}{1 + z_1 z_2}$, après avoir déterminé à quelle condition ce quotient avait un sens.

Exercice 15.

 \mathbf{V}

1. Montrer que si
$$z \in \mathbb{U} \setminus \{1\}$$
, alors $\mathfrak{i} \frac{1+z}{1-z} \in \mathbb{R}$.

2. Soit $z \in \mathbb{U} \setminus \{-1\}$. Montrer qu'il existe $a \in \mathbb{R}$ tel que $z = \frac{1 + ia}{1 - ia}$

 \mathbf{V}

Exercice 16⁺.

Montrer l'égalité $\left\{z \in \mathbb{C}^* \left| z + \frac{1}{z} \in \mathbb{R} \right.\right\} = \mathbb{U} \cup \mathbb{R}^*$.

(In)égalités sur les modules

Exercice 17.	Y
Soit $z_1, z_2 \in \mathbb{C}$.	
1. Montrer $ \text{R\'e}(\overline{z_1}z_2) \le z_1 z_2 $ et comparer à l'inégalité de Cauchy-Schwarz vue en cours.	
2. À quelle condition cette inégalité est-elle une égalité?	
Exercice 18.	?
Soit $a, b \in \mathbb{C}$. Montrer que $ a + b \le a + b + a - b $ et préciser les cas d'égalité.	
Exercice 19.	
Montrer que pour tous $a, b, c \in \mathbb{C}$, on a $ 1 + a + a + b + b + c + c \ge 1$.	
Exercice 20.	~
Exercice 20. Soit $z \in \mathbb{C}$. Montrer $\frac{ \operatorname{Re} z + \operatorname{Im} z }{\sqrt{2}} \le z \le \operatorname{Re} z + \operatorname{Im} z $.	
$\sqrt{2} \qquad \qquad z \leqslant \operatorname{Re} z + \operatorname{Int} z .$	
Exercice 21.	_
Montrer que $\forall z \in \mathbb{C}, e^z \leqslant e^{ z }$ et déterminer les cas d'égalité.	
Exercice 22 ⁺ .	_
Déterminer l'ensemble des complexes s'écrivant comme somme de trois complexes de module 1.	
Exercice 23. Soit a et b deux nombres complexes de module ≤ 1 . Montrer que $ a+b \leq \sqrt{2}$ ou $ a-b \leq \sqrt{2}$.	ð
Soit a et b deux nombres complexes de module ≤ 1 . Montrer que $ a+b \leq \sqrt{2}$ ou $ a-b \leq \sqrt{2}$.	
Exercice 24.	ð
Soit $z \in \mathbb{U}$. Montrer que $ 1 + z \ge 1$ ou $ 1 + z^2 \ge 1$.	
Exercice 25 ⁺ . Soit $z \in \mathbb{C}$. Montrer que $ z^2 - 1 \le 8 \Rightarrow z - 2 \le 5$.	_
Soit $z \in \mathbb{C}$. Montrer que $ z^2 - 1 \leqslant 8 \Rightarrow z - 2 \leqslant 5$.	
Exercice 26.	Z
Soit $x, y, z \in \mathbb{R}$. Montrer que $e^{ix} + e^{iy} + e^{iz} = 0 \Rightarrow e^{i2x} + e^{i2y} + e^{i2z} = 0$.	
Exercice 27.	ð
Soit $a, b, c \in \mathbb{U}$. Montrer que $ a + b + c = ab + bc + ca $.	
	_
	Ŷ
Soit $a, b \in \mathbb{C}$ tels que $ a , b < 1$. Montrer que $\left \frac{a-b}{1-\overline{a}b} \right < 1$.	
1-av	
Evension 20 [±]	
Exercice 29 ⁺ . Soit $a, b \in \mathbb{C}$. On a $ a + b ^2 \le \left(1 + a ^2\right) \left(1 + b ^2\right)$.	_
Solit $a, b \in \mathbb{C}$. Oil $a a + b \leq (1 + a) / (1 + b)$.	
Exercice 30 ⁺⁺ .	_
Soit $z \in \mathbb{U} \setminus \{1\}$. Montrer qu'il existe $n \in \mathbb{N}^*$ tel que $ z^n - 1 \ge \sqrt{3}$.	

Géométrie plane

Exercice 31 (Identité du parallélogramme).

Soit $z, z' \in \mathbb{C}$. Montrer que $|z + z'|^2 + |z - z'|^2 = 2\left(|z|^2 + |z'|^2\right)$ et en donner une interprétation géométrique.

Exercice 32.

- 1. Écrire sous forme complexe :
 - ▶ la rotation de centre 2 i et de rapport $\frac{\pi}{4}$;
 - ▶ l'homothétie de centre 3 + 2i et de rapport -2;
 - ▶ la composée $r \circ s$, où r est la rotation de centre 1 et d'angle $\frac{\pi}{2}$ et s la symétrie centrale de centre i + 3. Déterminer plus directement cette transformation.
- 2. Déterminer les type et éléments caractéristiques (centre, angle, rapport, etc.) des transformations suivantes :
 - $ightharpoonup z \mapsto e^{i\frac{\pi}{3}}z + 1;$
 - $ightharpoonup z \mapsto z + 4 2i;$
 - $ightharpoonup z \mapsto 3z + i.$

Exercice 33.______

Déterminer les ensembles suivants.

- (i) $\{z \in \mathbb{C} \mid z + \overline{z} = |z|\};$
- (ii) $\{z \in \mathbb{C} \mid |1+z| \le 1 \text{ et } |1-z| \le 1\};$
- (iii) $\left\{z \in \mathbb{C}^* \mid \text{les vecteurs d'affixe } z \text{ et } \frac{1}{z} \text{ soient orthogonaux} \right\};$
- (iv) $\{z \in \mathbb{C} \mid 0 \text{ est le centre du cercle circonscrit du triangle de sommets } 1, z \text{ et } z + i\}$.

Exercice 34.

Montrer que si un carré du plan possède deux sommets adjacents à coordonnées entières, alors tous ses sommets le sont.

Exercice 35.

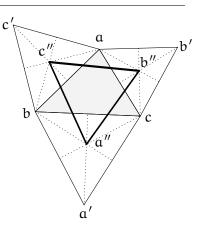
Montrer que quatre complexes distincts de $\mathbb{Z}[j] = \{a + bj \mid a, b \in \mathbb{Z}\}$ ne peuvent pas former un carré.

Exercice 36.

Déterminer les $z \in \mathbb{C}^*$ tels que z et ses trois racines cubiques forment un parallélogramme.

Exercice 37⁺ (Théorème « de Napoléon »).

- 1. Soit $a, b, c \in \mathbb{C}$ deux à deux distincts.
 - (a) Montrer que le triangle (a, b, c) est équilatéral direct si et seulement s'il existe $(\lambda, \mu) \in \mathbb{C}^* \times \mathbb{C}$ tel que a, b et c soient les images de 1, j et j^2 , respectivement, par $z \mapsto \lambda z + \mu$.
 - (b) En déduire que (a,b,c) est équilatéral direct si et seulement si $a+jb+j^2c=0$.
- 2. Dans la figure ci-contre, les trois petits triangles extérieurs sont équilatéraux. Montrer que (a'', b'', c'') est équilatéral.



Exercice 38⁺._

Soit $a, b, c \in \mathbb{U}$ tels que a + b + c = 0. Montrer que le triangle de sommets a, b et c est équilatéral.

Trigonométrie

Autocorrection I.

 \mathbf{V}

Soit $x \in \mathbb{R}$. Linéariser (c'est-à-dire exprimer comme des sommes de $\cos(px)$ et $\sin(qx)$, avec p et q des entiers) les expressions suivantes.

(i)
$$\cos^3(x)$$
;

(v)
$$\cos^5(x)$$
;

(ix)
$$\sin^3(x)\cos^3(x)$$
;

(ii)
$$\sin^3(x)$$
;

(vi)
$$\sin^5(x)$$
;

(x)
$$\sin^6(x) \cos(x)$$
;

(iii)
$$\cos^4(x)$$
;

(vii)
$$\sin(x) \cos^2(x)$$
;

(xi)
$$\sin^2(2x)\cos(3x)$$
;

(iv)
$$\sin^4(x)$$
;

(viii)
$$\sin^3(x) \cos^2(x)$$
;

(xii)
$$\cos^3(x)\sin(3x)$$
.

Autocorrection J._

V

Soit $x \in \mathbb{R}$. Écrire les expressions suivantes comme des sommes de $\cos^p(x) \sin^q(x)$, pour des entiers p et q.

(i)
$$cos(3x)$$
;

(iii)
$$cos(4x)$$
;

(v)
$$cos(5x)$$
;

(ii)
$$sin(3x)$$
;

(iv)
$$\sin(4x)$$
;

(vi)
$$\sin(5x)$$
.

₽☑

Exercice 39. Calculer $\cos \frac{\pi}{8}$ et $\sin \frac{\pi}{8}$ de deux manières :

- en calculant les racines carrées de $e^{i\pi/4}$ sous forme algébrique;
- \blacktriangleright en utilisant la formule donnant $\cos(2x)$ en fonction de $\cos(x)$.

Exercice 40. Calculer $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$, de deux manières :

- ▶ à l'aide de la relation $\frac{\pi}{12} = \frac{1}{2} \times \frac{\pi}{6}$;
- ▶ à l'aide de la relation $\frac{\pi}{12} = \frac{\pi}{3} \frac{\pi}{4}$.

Exercice 41.

 $\text{D\'emontrer que } \forall n \in \mathbb{N}^*, 2\cos\frac{\pi}{2^n} = \sqrt{2+\sqrt{2+\sqrt{\cdots+\sqrt{2}}}} \text{, o\`u la formule comporte } n-1 \text{ radicaux.}$

Cyclotomie

Exercice 42.

Calculer les produits $(a + bj + cj^2)(a + bj^2 + cj)$ et $(a + b + c)(a + bj + cj^2)(a + bj^2 + cj)$, pour trois nombres complexes a, b et c.

Exercice 43._

₽

Soit $n \geqslant 1$ un entier. Déterminer le produit des éléments de \mathbb{U}_n .

Exercice 44⁺.___

Soit $n \in \mathbb{N}^*$. On définit $Q = \{ \omega^2 \mid \omega \in \mathbb{U}_n \}$.

- 1. Montrer que $Q \subseteq \mathbb{U}_n$.
- 2. Montrer que $Q = \mathbb{U}_n$ si et seulement si n est impair.

Exercice 45.

 \mathbf{V}

 \mathbf{V}

- 1. Démontrer que $1 + 2\cos\left(\frac{2\pi}{5}\right) + 2\cos\left(\frac{4\pi}{5}\right) = 0$.
- 2. En déduire une équation du second degré vérifiée par $\cos\left(\frac{2\pi}{5}\right)$, puis une formule pour $\cos\left(\frac{2\pi}{5}\right)$.
- 3. Déterminer $\sin\left(\frac{2\pi}{5}\right)$, puis les valeurs de cos et sin en $\frac{\pi}{10}$ et $\frac{\pi}{5}$.

Exercice 46._

Ŷ

En utilisant les éléments de \mathbb{U}_7 , exhiber une équation de degré 3 dont $\cos\left(\frac{2\pi}{7}\right)$ soit solution.

₽

Exercice 47. Soit
$$\zeta_7 = \exp\left(i\frac{2\pi}{7}\right)$$
, $A = \zeta_7 + \zeta_7^2 + \zeta_7^4$ et $B = \zeta_7^3 + \zeta_7^5 + \zeta_7^6$.

Calculer A + B et AB, puis en déduire A et B.

Exercice 48. On note
$$A = 2\cos\left(\frac{2\pi}{13}\right) + 2\cos\left(\frac{6\pi}{13}\right) + 2\cos\left(\frac{8\pi}{13}\right)$$
 et $B = 2\cos\left(\frac{4\pi}{13}\right) + 2\cos\left(\frac{10\pi}{13}\right) + 2\cos\left(\frac{12\pi}{13}\right)$.

- 1. Exprimer A et B à l'aide de puissances de $\zeta = \exp\left(i\frac{2\pi}{13}\right)$.
- 2. (a) Calculer A + B et AB.
 - (b) En déduire les valeurs de A et B.
- 3. En déduire $\zeta + \zeta^3 + \zeta^9 = \frac{\sqrt{13} 1 + i\sqrt{26 6\sqrt{13}}}{\sqrt{13}}$

Exercice 49⁺._

Soit $\omega \in \mathbb{U}_7 \setminus \{1\}$.

- 1. Montrer que $\frac{\omega}{1+\omega^2} + \frac{\omega^2}{1+\omega^4} + \frac{\omega^3}{1+\omega^6} = -2.$ 2. En déduire la valeur de $\frac{1}{\cos\frac{2\pi}{7}} + \frac{1}{\cos\frac{4\pi}{7}} + \frac{1}{\cos\frac{6\pi}{7}}.$

Équations diverses

Autocorrection K.

 \mathbf{V}

Résoudre dans \mathbb{C} les équations suivantes (n > 1 est un entier).

(i)
$$z^8 = \frac{1+i}{\sqrt{3}-i}$$
;

(iii)
$$z^4 = -7 + 24i$$
;

(ii)
$$z^n = i$$

(iv)
$$z^8 - 3z^4 + 2 = 0$$
.

Exercice 50._

Résoudre l'équation $1 + \overline{z} = |z|$.

Exercice 51.

_₽

Résoudre dans $\ensuremath{\mathbb{C}}$ les équations suivantes.

(i)
$$e^z = 0$$
;

(iii)
$$e^z = 1 + i$$
;

(v)
$$e^z + 2e^{-z} = i$$
.

(ii)
$$e^z = i$$
;

(iv)
$$e^z + e^{-z} = 1$$
;

Exercice 52.

1. Déterminer l'ensemble des $z \in \mathbb{C}$ tels que $\left| \frac{z+\mathfrak{i}}{z-\mathfrak{i}} \right| = 1$.

(On commencera par déterminer pour quelles valeurs de $z \in \mathbb{C}$ l'expression a un sens).

2. Même question avec l'ensemble des $z\in\mathbb{C}$ tels que $\left|\frac{z-3}{z-5}\right|=1.$

Exercice 53._

~

Résoudre dans \mathbb{C} l'équation $\text{Ré}(z^3) = \text{Im}(z^3)$.

Exercice 54.____

Trouver tous les $z \in \mathbb{C}^*$ tels que z, $\frac{1}{z}$ et 1-z aient même module.

Exercice 55._

_🗹

Soit $n \in \mathbb{N}^*$. Résoudre $z^n = \overline{z}$.

Exercice 56.__

 \mathbf{Z}

Résoudre dans $\mathbb C$ les équations suivantes ($\theta \in \mathbb R$ est un paramètre, n>1 un entier).

(i)
$$\bar{z}^7 = \frac{1}{z^2}$$
;

(iv)
$$z^5 = 16\sqrt{2} + 16i\sqrt{2}$$
;

(ii)
$$z^2 - 2e^{i\theta}z + 2i\sin(\theta)e^{i\theta} = 0$$
;

(v)
$$z^7 - 4z^5 - z^2 + 4 = 0$$
;

(iii)
$$z^{2n} - 2\cos(n\theta)z^n + 1 = 0$$
;

(vi)
$$z^8 + 2z^7 - 2z - 4 = 0$$
.

Exercice 57.____

Résoudre l'équation $z^3=2+11i$, en sachant qu'elle possède une solution dans $\{a+ib \mid a,b\in\mathbb{Z}\}$.

Exercice 58._

_🗹

Soit $n \in \mathbb{N}^*$. Résoudre dans \mathbb{C} l'équation $(z+\mathfrak{i})^n - (z-\mathfrak{i})^n = 0$.

Exercice 59⁺.___

Soit $n \in \mathbb{N}^*$ et $A \in \mathbb{C}$. Déterminer une condition nécessaire et suffisante sur n et A pour que les solutions de $\left(\frac{1+iz}{1-iz}\right)^n = A$ soient réelles.

8