Applications

Exercice 1._

_🗹

Soit Ω un ensemble et $A, B \subseteq \Omega$. Montrer que les fonctions suivantes sont les fonctions indicatrices de parties de Ω que l'on précisera.

- (i) $\min(1_A, 1_B)$;
- (iii) $\mathbb{1}_{A} \cdot \mathbb{1}_{B}$;

(v) $\mathbb{1}_{A} + \mathbb{1}_{B} - \mathbb{1}_{A} \cdot \mathbb{1}_{B}$;

- (ii) $\max(\mathbb{1}_A, \mathbb{1}_B)$;
- (iv) $1 1_A$;

(vi) $(1_A - 1_B)^2$.

Exercice 2.

Soit E_1, E_2, F trois ensembles et $f_1: E_1 \to F$, $f_2: E_2 \to F$ deux applications.

Donner une condition nécessaire et suffisante pour qu'il existe une application $g: E_1 \cup E_2 \to F$ telle que $g_{|E_1} = f_1$ et $g_{|E_2} = f_2$.

Injectivité, surjectivité, bijectivité

Autocorrection A.

S

Soit E, F et G trois ensembles et $f : E \to F$, $g : F \to G$ deux applications.

- 1. Montrer que si $g \circ f$ est surjective et que g est injective, alors f est surjective.
- 2. Montrer que si $g \circ f$ est injective et que f est surjective, alors g est injective.

Exemples

Autocorrection B.

_____**♂**

- 1. L'application $f: \begin{cases} \mathbb{N} \to \mathbb{N} \\ n \mapsto 2n \end{cases}$ est-elle injective? surjective?
- $\text{2. Mêmes questions pour l'application } g: \begin{cases} \mathbb{N} \to & \mathbb{N} \\ \mathfrak{n} \mapsto \begin{cases} \frac{\mathfrak{n}}{2} & \text{si } \mathfrak{n} \text{ est pair} \\ \mathfrak{n} & \text{si } \mathfrak{n} \text{ est impair.} \end{cases}$
- 3. Déterminer $g \circ f$ et $f \circ g$. Sont-elles injectives? surjectives?

Autocorrection C.

___**⋖**

Soit $f: \begin{cases} \mathbb{N} \to \mathbb{N} \\ x \mapsto x^2. \end{cases}$

- 1. L'application f est-elle injective? surjective?
- 2. Existe-t-il $g: \mathbb{N} \to \mathbb{N}$ telle que $f \circ g = id_{\mathbb{N}}$? Existe-t-il $h: \mathbb{N} \to \mathbb{N}$ telle que $h \circ f = id_{\mathbb{N}}$?

Exercice 3.

Déterminer si les applications suivantes sont injectives (resp. surjectives, bijectives).

(i)
$$\begin{cases} \mathbb{N} \to \mathbb{N} \\ n \mapsto n+1 \end{cases}$$

(v)
$$\begin{cases} \mathbb{R}^2 \to \mathbb{R}^3 \\ (x,y) \mapsto (y,0,y-x) \end{cases}$$

 \mathbf{V}

 \mathbf{V}

(ii)
$$\begin{cases} \mathbb{Z} \to \mathbb{Z} \\ \mathfrak{n} \mapsto \mathfrak{n} + 1 \end{cases}$$

(vi)
$$\begin{cases} \mathbb{R} \to \mathbb{R} \\ z \mapsto z^2 + z + 1 \end{cases}$$

$$(x) \ \begin{cases} \mathbb{Z} \to \mathbb{Z} \\ n \mapsto n + (-1)^n \end{cases}$$

(iii)
$$\begin{cases} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x,y) \mapsto (y,x); \end{cases}$$

(vii)
$$\begin{cases} \mathbb{C} \to \mathbb{C} \\ z \mapsto z^2 + z + 1 \end{cases}$$

$$(xi) \begin{cases} \mathbb{R}^{\mathbb{R}} \to \mathbb{R} \\ f \mapsto f(0); \end{cases}$$

(iv)
$$\begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto 3y \end{cases}$$

(viii)
$$\begin{cases} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x, y) \mapsto (x + y, xy); \end{cases}$$

(xii)
$$\begin{cases} \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}_+) \\ X \mapsto X \cap \mathbb{R}_+ \end{cases}$$

Exercice 4. Soit $f: \begin{cases} \mathbb{N} \to \mathbb{N} \\ n \mapsto n+1 \end{cases}$ et $g: \begin{cases} \mathbb{N} \to \mathbb{N} \\ n \mapsto max(0,n-1). \end{cases}$

- 1. Montrer que $g \circ f = id_{\mathbb{N}}$.
- 2. Peut-on en déduire que l'application g est la réciproque de f?

Soit f: $\begin{cases} \mathbb{N} \to \mathbb{Z} \\ n \mapsto \begin{cases} \frac{n}{2} & \text{si n est pair} \\ -\frac{n+1}{2} & \text{sinon.} \end{cases}$

Montrer que f est bijective et donner la bijection réciproque.

Exercice 6.___

On note $\pi: \mathbb{N}^* \to \mathbb{N}$ la fonction qui associe à tout entier n le nombre de nombres premiers appartenant à l'intervalle entier [1, n].

La fonction π est-elle injective? surjective? bijective?

Ŷ

Exercice 7^+ . Déterminer si la fonction sin : $\mathbb{Q} \to [-1,1]$ est injective et/ou surjective.

Exercice 8⁺. $\text{Montrer que } \chi : \begin{cases} \mathbb{N} \to \underbrace{(\mathbb{N}^{\mathbb{N}})^{(\mathbb{N}^{\mathbb{N}})}}_{n \text{ fois}} \\ \text{est injective.} \end{cases}$

Exercice 9.

 \mathbf{V}

Pour tout $x \in \mathbb{R}$, on se donne une application $f_x : \mathbb{R} \to \mathbb{R}$. On définit alors

$$\varphi: \left\{ \begin{matrix} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto (x,\mathsf{f}_x(y)). \end{matrix} \right.$$

- 1. Montrer que φ est injective si et seulement si, pour tout $x \in \mathbb{R}$, l'application f_x est injective.
- 2. Montrer que ϕ est surjective si et seulement si, pour tout $x \in \mathbb{R}$, l'application f_x est surjective. 3. **Application.** L'application $\begin{cases} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x,y) \mapsto (x,y^3+xy) \end{cases}$ est-elle injective? surjective?

Exercice 10⁺._

Soit E et F deux ensembles non vides et G un ensemble ayant au moins deux éléments. Soit $f: E \to F$. On considère l'application

 $\varphi: \begin{cases} G^F \to G^E \\ g \mapsto g \circ f. \end{cases}$

- 1. Montrer que φ est injective si et seulement si f est surjective.
- 2. Montrer que φ est surjective si et seulement si f est injective.

Exercice 11⁺._

 \mathbb{Q}

Soit Ω un ensemble et $X, Y \subseteq \Omega$. On considère l'application

$$\psi: \left\{ \begin{array}{ll} \mathcal{P}(\Omega) \to & \mathcal{P}(X) \times \mathcal{P}(Y) \\ A & \mapsto (X \cap A, Y \cap A). \end{array} \right.$$

Donner des conditions nécessaires et suffisantes sur X et Y pour que ψ soit injective (resp. surjective). Quand ψ est bijective, exhiber sa réciproque.

Exercice 12⁺⁺.____

- 1. Soit $\phi: \left\{ egin{aligned} \mathcal{P}(\mathbb{N}) & \to & \mathcal{P}(\mathbb{N}) \\ A & \mapsto \left\{ n \in \mathbb{N} \,\middle|\, 2n \in A \right\}. \end{aligned} \right.$
 - (a) Cette application est-elle injective? surjective?
 - (b) Trouver une partie $A \in \mathcal{P}(\mathbb{N})$ non triviale (c'est-à-dire ni \mathbb{N} , ni \emptyset) telle que $\phi(A) = A$.
- $\text{2. Soit } \phi: \left\{ \begin{array}{l} \mathfrak{P}(\mathbb{N}) \to & \mathfrak{P}(\mathbb{N})^2 \\ A & \mapsto \Big(\left\{ n \in \mathbb{N} \,\middle|\, 2n \in A \right\}, \left\{ n \in \mathbb{N} \,\middle|\, 2n + 1 \in A \right\} \Big). \end{array} \right.$
 - (a) Cette application est-elle injective? surjective?
 - (b) Existe-t-il une partie propre $A \in \mathcal{P}(\mathbb{N})$ telle que $\psi(A) = (A, A)$?

Exercice 13⁺⁺.____

- 1. Soit $f,g:\mathbb{Z}\to\mathbb{Z}$ deux bijections. Montrer que $\left\{egin{align*} \mathbb{Z}\to\mathbb{Z} \\ k\mapsto f(k)\,g(k) \end{array} \right.$ n'est pas bijective.
- 2. Peut-elle être injective?

Exercice 14⁺⁺⁺ (Règle de Golomb)._____

 $\text{Montrer qu'il existe une partie } G \subseteq \mathbb{N} \text{ telle que } \delta : \left\{ \left\{ (a,b) \overline{\in G^2 \, \middle| \, a < b \right\} \to \, \mathbb{N}^*} \atop (a,b) \mapsto b-a \right. \text{ soit bijective.}$

Théorie

Exercice 15.

 \mathbf{V}

Soit E et F deux ensembles, et $A \subseteq E$. Soit $f : E \to F$. Dire si les assertions suivantes sont vraies ou fausses (on justifiera par une preuve ou un contre-exemple).

- (i) Si f est injective, alors $f_{|A}$ est injective.
- (iii) Si $f_{|A}$ est injective, alors f est injective.
- (ii) Si f est surjective, alors $f_{|A}$ est surjective. (iv) Si $f_{|A}$ est surjective, alors f est surjective.

Exercice 16.

 \mathbf{V}

Soit $f : \mathbb{R} \to \mathbb{R}$. Montrer que si f est strictement monotone, alors f est injective.

La réciproque est-elle vraie?

Exercice 17._

 \mathbb{Q}

Soit $f : \mathbb{R} \to \mathbb{R}$ bijective.

- 1. Montrer que f est impaire si et seulement si f^{-1} l'est.
- 2. A-t-on le même résultat pour la parité?

Exercice 18.

 \mathbf{V}

Soit E, F, G, H quatre ensembles et f : E \rightarrow F, g : F \rightarrow G et h : G \rightarrow H trois applications.

Montrer que si $g \circ f$ et $h \circ g$ sont bijectives, alors f, g et h sont bijectives.

Exercice 19⁺.

Soit E un ensemble, n > 1 un entier et $f : E \to E$ telle que $f^{\circ n} = \underbrace{f \circ f \circ \cdots \circ f}$ soit égale à f.

- 1. Montrer que f est injective si et seulement si elle est surjective.
- 2. On fixe n = 2. À quelle condition f est-elle injective?

Exercice 20⁺._

Soit f, g: $\mathbb{N} \to \mathbb{N}$ deux applications telles que f soit injective, g soit surjective et $\forall n \in \mathbb{N}$, $f(n) \leq g(n)$.

Montrer que f = g.

Images directe et réciproque

Autocorrection D.

 \mathbf{V}

- 1. Déterminer $\sin[A]$, dans les $\cos A = \mathbb{R}$, \mathbb{R}_+ , $[0, 2\pi]$, $[-\pi, \pi]$, $[0, \pi/2]$, $[-\pi, \pi/2]$.
- 2. Déterminer $\sin^{-1}[B]$ dans les cas $B = [-1, 1], [0, 1], [3, 4], \mathbb{R}, \{1\}, \{-1, 1\}.$

Exercice 21.
Soit f:
$$\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 2x^2 - 4x + 1. \end{cases}$$

- 1. La fonction f est-elle injective? surjective?
- 2. Montrer que f est injective sur $[1, +\infty[$. En déduire que f induit une bijection de $[1, +\infty[$ sur son image (que l'on précisera) et déterminer son application réciproque.
- 3. Déterminer f[0,1], $f[\mathbb{R}_{-}]$, $f[\mathbb{R}_{+}]$, f[-2,2], $f^{-1}[1]$, $f^{-1}[-1]$, $f^{-1}[0,1]$, $f^{-1}[-2,1]$.

Soit f:
$$\begin{cases} \mathbb{C}^* \to \mathbb{C} \\ z \mapsto z + \frac{1}{z} \end{cases}$$

- 1. L'application f est-elle injective? surjective?
- 2. Déterminer $f[\mathbb{R}^*]$ et $f[\mathbb{U}]$.

Exercice 23.

On considère

$$f: \left\{ egin{aligned} \mathbb{C} & \to \mathbb{C} \\ z & \mapsto z^2. \end{aligned}
ight.$$

- 1. La fonction f est-elle injective? surjective? bijective?
- 2. On note $\Omega = \{z \in \mathbb{C} \mid \text{Ré } z > 0\}$.

Montrer que la restriction de f à Ω est injective.

3. Décrire l'image de $f_{|\Omega}$.

 \mathbf{V}

Exercice 24. Soit $f: \begin{cases} \mathbb{N} \to \mathbb{N} \\ n \mapsto n+1. \end{cases}$ Déterminer les parties $A \in \mathcal{P}(\mathbb{N})$ stables sous f.

Exercice 25._

Soit X un ensemble. Déterminer les applications $f: X \to X$ stabilisant toutes les parties de X.

Exercice 26.__

 \mathbf{V}

Soit $f: E \to F$ une application. Montrer $\forall A \in \mathcal{P}(E), \forall B \in \mathcal{P}(F), f \lceil A \cap f^{-1}[B] \rceil = f[A] \cap B$.

Exercice 27.__

 \mathbf{V}

Soit E et F deux ensembles et f : E \rightarrow F.

- 1. Montrer que f est injective si et seulement si $\forall (A, B) \in \mathcal{P}(E)^2$, $f[A \cap B] = f[A] \cap f[B]$.
- 2. Montrer que f est bijective si et seulement si $\forall A \in \mathcal{P}(E)$, $f[E \setminus A] = F \setminus f[A]$.

Exercice 28⁺.___

Soit E et F deux ensembles et $f : E \rightarrow F$.

- 1. Soit $A \subseteq E$. Montrer que $A \subseteq f^{-1}[f[A]]$ et donner un exemple prouvant qu'il n'y a pas toujours
- 2. Montrer que f est injective si et seulement si $\forall A \in \mathcal{P}(E)$, $f^{-1}[f[A]] = A$.
- 3. Soit $B \subseteq F$. Montrer que $f \mid f^{-1}[B] \mid \subseteq B$ et donner un exemple prouvant qu'il n'y a pas toujours
- 4. Montrer que f est surjective si et seulement si $\forall B \in \mathcal{P}(F), f\left\lceil f^{-1}[B] \right\rceil = B.$

Exercice 29⁺._

Soit E et F deux ensembles et $f : E \rightarrow F$. On considère les applications

$$\phi: \left\{ \begin{matrix} \mathcal{P}(E) \to \mathcal{P}(F) \\ X \ \mapsto \ f[X] \end{matrix} \right. \qquad \text{et} \qquad \psi: \left\{ \begin{matrix} \mathcal{P}(F) \to \ \mathcal{P}(E) \\ Y \ \mapsto \ f^{-1}[Y] \textbf{.} \end{matrix} \right.$$

- 1. Montrer les équivalences f injective $\Leftrightarrow \varphi$ injective $\Leftrightarrow \psi$ surjective.
- 2. Montrer les équivalences f surjective $\Leftrightarrow \varphi$ surjective $\Leftrightarrow \psi$ injective.

Familles d'ensembles

Autocorrection E.

 \mathbf{V}

1. Montrer
$$\bigcup_{x \in [0,1]}]x - 1, x + 1[=]-1, 2[$$
.
2. Que vaut $\bigcap_{x \in [0,1]}]x - 1, x + 1[$?

Autocorrection F.

 \mathbf{V}

Soit E et F deux ensembles et $f : E \rightarrow F$. Soit I un ensemble non vide.

1. Soit $(B_i)_{i \in I}$ une famille de parties de F.

(a) Montrer
$$f^{-1}\left[\bigcup_{i\in I}B_i\right]=\bigcup_{i\in I}f^{-1}[B_i].$$

(b) Montrer $f^{-1} \left| \bigcap_{i \in I} B_i \right| = \bigcap_{i \in I} f^{-1}[B_i].$

2. Soit $(A_i)_{i \in I}$ une famille de parties de E.

(a) Montrer f
$$\left[\bigcup_{i\in I}A_i\right]=\bigcup_{i\in I}f[A_i].$$

(b) Montrer
$$f\left[\bigcap_{i\in I}A_i\right]\subseteq\bigcap_{i\in I}f[A_i].$$

Autocorrection G.__

 \mathbf{V}

Soit Ω un ensemble, et $(A_i)_{i\in I}$ une famille de parties de Ω . Soit enfin $B\in \mathcal{P}(\Omega)$. Montrer

$$\left(\bigcup_{i\in I}A_i\right)\cap B=\bigcup_{i\in I}(A_i\cap B)\qquad \text{et}\qquad \left(\bigcap_{i\in I}A_i\right)\cup B=\bigcap_{i\in I}(A_i\cup B).$$

Exercice 30._

Soit $f: E \to F$ une application entre deux ensembles. On suppose qu'il existe une suite $(A_n)_{n \in \mathbb{N}}$ de parties de E telle que

(i)
$$\bigcup_{n\in\mathbb{N}}A_n=E$$
;

(ii) $\forall n \in \mathbb{N}, A_n \subseteq A_{n+1}$;

et que, pour tout $n \in \mathbb{N}$, la restriction $f_{|A_n}$ est injective.

- 1. Montrer que f est injective.
- 2. Montrer que les deux hypothèses (i) et (ii) sont nécessaires.

Exercice 31 (Tout ensemble est une union de singletons).

 \mathbf{V}

Soit E un ensemble. Montrer que $E = \bigcup \{x\}.$

Exercice 32.

 \mathbf{V}

Soit $f: E \to F$ une application. On définit $K(f) = \left\{ (x_1, x_2) \in E^2 \, \middle| \, f(x_1) = f(x_2) \right\}$.

- $1. \ \text{D\'eterminer} \ K(f) \ \text{pour les exemples} \ f_1: \left\{ \begin{matrix} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2, \end{matrix} \right. \ f_2: \left\{ \begin{matrix} \mathbb{R} \to \mathbb{R} \\ x \mapsto e^x \end{matrix} \right. \ \text{et} \ f_3: \left\{ \begin{matrix} \mathbb{C} \to \mathbb{C} \\ z \mapsto e^z. \end{matrix} \right.$
- 2. Montrer $K(f) = \bigcup_{y \in F} f^{-1}[\{y\}]^2$.

Exercice 33.

Soit Ω un ensemble et $\mathcal{U} \subseteq \mathcal{P}(\Omega)$ telle que, pour tout recouvrement disjoint $(A_1, A_2, A_3) \in \mathcal{P}(\Omega)^3$, il existe un unique indice $i \in \{1, 2, 3\}$ tel que $A_i \in \mathcal{U}$.

Montrer:

- 1. $\emptyset \notin \mathcal{U}$ et $\Omega \in \mathcal{U}$;
- 2. $\forall A \in \mathcal{P}(\Omega), A \in \mathcal{U} \text{ ou } \Omega \setminus A \in \mathcal{U};$
- 3. $\forall A \in \mathcal{U}, \forall B \in \mathcal{P}(\Omega), A \cap B = \emptyset \Rightarrow B \notin \mathcal{U};$
- 4. $\forall A \in \mathcal{U}, \forall B \in \mathcal{P}(\Omega), A \subseteq B \Rightarrow B \in \mathcal{U};$
- 5. $\forall A, B \in \mathcal{U}, A \cap B \in \mathcal{U}$.

Exercice 34._

 \mathbf{V} Soit X un ensemble et f : $X \to X$ une application. Soit $(A_i)_{i \in I}$ une famille de parties de X.

- $1. \ \ \text{Montrer que si, pour tout } i \in I \text{, } A_i \text{ est stable sous f, il en va de même de} \bigcap_{i=1}^n A_i \text{ et } \bigcup_{i=1}^n A_i.$
- 2. Est-il vrai en général que si $A \subseteq X$ est stable sous f, alors $X \setminus A$ l'est également?

Exercice 35⁺._

Soit $(E_n)_{n\in\mathbb{N}}$ une famille de parties de \mathbb{R} . On définit leurs limites inférieure et supérieure

$$\liminf_{n\in\mathbb{N}}E_n=\bigcup_{n\in\mathbb{N}}\bigcap_{k\geqslant n}E_k\qquad\text{et}\qquad\limsup_{n\in\mathbb{N}}E_n=\bigcap_{n\in\mathbb{N}}\bigcup_{k\geqslant n}E_k.$$

Ŷ

Q

- 1. Montrer que $\displaystyle \liminf_{n \in \mathbb{N}} E_n \subseteq \displaystyle \limsup_{n \in \mathbb{N}} E_n.$
- 2. Calculer $\displaystyle \liminf_{n \in \mathbb{N}} E_n$ et $\displaystyle \limsup_{n \in \mathbb{N}} E_n$ dans les cas suivants :
 - $\blacktriangleright (E_n)_{n\in\mathbb{N}} = ([n, +\infty[)_{n\in\mathbb{N}};$
 - $\blacktriangleright \ (E_n)_{n\in\mathbb{N}} = \left(\left[(-1)^n\,n,+\infty\right[\right)_{n\in\mathbb{N}}.$
- 3. Montrer que $\liminf_{n\in\mathbb{N}}E_n=\limsup_{n\in\mathbb{N}}E_n$ si et seulement si, pour tout $x\in\mathbb{R}$, la suite $\left(\mathbb{1}_{E_n}(x)\right)_{n\in\mathbb{N}}$ stationne (c'est-à-dire est constante à partir d'un certain rang).

Exercice 36⁺⁺._

Soit Ω un ensemble et $(A_i)_{i=1}^n$ et $(B_i)_{i=1}^n$ deux familles de parties de Ω . Montrer

$$\bigcup_{i=1}^n (A_i \cap B_i) = \bigcap_{I \in \mathcal{P}([1,n])} \left[\bigcup_{i \in I} A_i \cup \bigcup_{j \not \in I} B_j \right].$$