Polynômes

Exercice 1.

Dans tous les cas, on pourra raisonner par analyse et synthèse et considérer rapidement le degré des polynômes en jeu.

Exercice 5._

On pourra notamment exploiter l'inégalité triangulaire.

Exercice 6.____

On pourra se souvenir de la factorisation de $a^3 - b^3$...

Exercice 7

On pourra commencer par montrer l'existence, pour tout $k \in \mathbb{N}$, d'un polynôme Q_k vérifiant l'égalité $P(X)^k - X^k = Q_k(X)(P(X) - X)$.

Exercice 8._

De manière complètement surprenante, Alice peut déterminer le polynôme en seulement deux questions!

Exercice 10._

On peut commencer par exprimer cette somme en fonction d'une somme indexée par les entiers de 0 à n + 1. Ensuite, utiliser une expression de $(a - b)^2$ en fonction de a^2 , b^2 et $(a + b)^2$.

Exercice 11.

Pour la deuxième question, on pourra entre autres chercher une variante de la formule de convolution de Vandermonde qui peut aider.

Exercice 13._

Si r > 1 est une racine de Q, l'expression de P en fonction de Q permet de calculer facilement $P(\pm \sqrt{r})$.

Exercice 14.

Montrer qu'en général, l'évaluation $P(\sqrt{2})$ est de la forme $\alpha + \beta\sqrt{2}$, avec $\alpha, \beta \in \mathbb{Q}$. Que peut-on dire si ce nombre est nul?

Exercice 16

On pourra considérer le polynôme \overline{P} , convenablement défini.

Exercice 22.

En notant $P = \sum_{n=0}^d a_n X^n$ un polynôme vérifiant la condition, on pourra commencer par montrer la condition $\forall k \in \llbracket -d, d \rrbracket, \sum_{n,m \in \llbracket 0, d \rrbracket} \overline{a_n} \ a_m = \delta_{n,m}.$

Exercice 29.
Pour la deuxième question, on cherchera à définir des polynômes auxiliaires auxquels appliquer la première question.
Notamment, on se demandera comment fabriquer un polynôme dont les racines sont les inverses des racines de P.
Penser à la formule de Taylor.
Exercice 46.
Comment trouveriez-vous un tel A si P était un polynôme explicite?
Exercice 47.
On pourra examiner ce qu'il se passe à droite du dernier point critique de la fonction polynomiale $t\mapsto P(t)$ (si elle en a un).
Exercice 48.
On peut raisonner en termes de tableaux de variations, ou chercher le résultat du cours qui donne le résultat immédiatement.
Exercice 51.
On pourra utiliser la formule explicite du polynôme interpolateur.
Exercice 52.
La condition nous invite à considérer le polynôme $Q = XP - 1$. Qu'en dire?
Exercice 60.
On n'oubliera pas que le théorème de Rolle s'applique également à des fonctions non polynomiales!
Exercice 61.
Si $P \in \mathbb{R}[X]$, quel est l'équivalent de $P(\mathfrak{u})$ quand $\mathfrak{u} \to \mathfrak{0}$?
Exercice 85.
On pourra commencer par montrer que les racines non nulles de P sont nécessairement des racines de l'unité, puis montrer qu'en fait toutes les racines de P appartiennent à $\{j,j^2\}$.
Exercice 86.
Pour la deuxième question, on pourra partir du produit, utiliser la formule d'Euler puis, dans chaque facteur du produit, une factorisation permettant de faire apparaître la valeur $P(1) = \mathfrak{n} + 1$.
Exercice 87.
On pourra commencer par factoriser le polynôme $T_{2n}-1$, où l'on a noté T_{2n} le $(2n)$ -ième polynôme
de Čebyšëv. À partir de là, on pourra mettre la main sur un polynôme dont les $5-4\cos\left(\frac{k\pi}{n}\right)$ sont
racines doubles, puis appliquer une relation coefficients-racines.
Exercice 88.
Pour la deuxième question, on pourra se demander à quoi ressemble la décomposition en facteurs irréductibles d'un polynôme à valeurs positives.

Autocorrection

Autocorrection A.

On a

$$PQ = 2X^{5} - X^{4} + X^{3}$$

$$-2X^{4} + X^{3} - X^{2}$$

$$+6X^{3} - 3X^{2} + 3X$$

$$-2X^{2} + X - 1$$

$$= 2X^{5} - 3X^{4} + 8X^{3} - 6X^{2} + 4X - 1.$$

 $\begin{aligned} & \text{Par exemple en \'ecrivant } P^2 \text{ comme } P \times P \text{, ou en utilisant la formule } \left(\sum_{i=1}^n \alpha_i \right)^2 = \sum_{i=1}^n \alpha_i^2 + 2 \sum_{1 \leqslant i < i \leqslant n} \alpha_i \alpha_j, \\ & \text{on obtient} \end{aligned}$

$$P^2 = X^6 - 2X^5 + 7X^4 - 8X^3 + 11X^2 - 6X + 1$$
 et, de même,
$$Q^2 = 4X^4 - 4X^3 + 5X^2 - 2X + 1.$$

Enfin, après calculs, (en développant notamment $(2X^2 - X + 1)^3 = (2X^2 - X + 1)^2 \times (2X^2 - X + 1)$)

$$\begin{split} P\circ Q &= Q^3 - Q^2 + 3Q - 1\\ &= 8X^6 - 12X^5 + 14X^4 - 9X^3 + 10X^2 - 4X + 2. \end{split}$$
 De même, $Q\circ P = 2P^2 - P + 1$
$$= 2X^6 - 4X^5 + 14X^3 - 17X^3 + 23X^2 - 15X + 4. \end{split}$$

Autocorrection B.

D'après le binôme de Newton, on a

$$(X+1)^n = X^n + nX^{n-1} + \dots + 1$$

$$(X-1)^n = X^n - nX^{n-1} + \dots + (-1)^n.$$

Ainsi,

$$(X+1)^n - (X-1)^n = 2nX^{n-1} + \dots + 1 - (-1)^n$$

$$(X+1)^n + (X-1)^n = 2X^n + \dots + 1 + (-1)^n.$$

Autocorrection C.

Le polynôme X^3 convient clairement. Montrons que c'est le seul.

Soit $P \in K[X]$ tel que $\forall k \in \mathbb{N}, P(k) = k^3$. Le polynôme $P - X^3$ a donc tous les entiers naturels comme racines. D'après le critère radical de nullité, il est nul, ce qui montre que $P = X^3$.

Autocorrection D.

Montrons qu'il n'y a pas de tel polynôme. Supposons par l'absurde pouvoir trouver $P \in \mathbb{R}[X]$ tel que $\forall n \in \mathbb{N}, P(n) = n^2 + (-1)^n$.

- ▶ Notons $2\mathbb{N}$ l'ensemble (infini) des entiers naturels pairs. On a $\forall n \in 2\mathbb{N}, P(n) = n^2 + 1$. Par rigidité des polynômes, cela montre $P = X^2 + 1$.
- ▶ Notons $2\mathbb{N} + 1$ l'ensemble (infini) des entiers naturels impairs. On a $\forall n \in 2\mathbb{N} + 1$, $P(n) = n^2 1$. Par rigidité des polynômes, cela montre $P = X^2 1$.

On a ainsi obtenu la contradiction souhaitée.

Autocorrection E.

Par définition, le reste R recherché est l'unique élément $R \in K_1[X]$ tel qu'il existe $Q \in K[X]$ tel que

$$P = (X - a)(X - b)Q + R. \tag{*}$$

Comme $R \in K_1[X]$, on peut trouver $u, v \in K$ tel que R = uX + v.

En évaluant (*) en a et en b, on obtient les équations

$$P(a) = (a-a)(a-b)Q(a) + R(a) = u \, a + v \qquad \text{et, de même,} \qquad P(b) = u \, b + v.$$

On a ainsi un système de deux équations à deux inconnues (u et v):

$$\begin{cases} au + v = P(a) \\ bu + v = P(b). \end{cases}$$

Procédons par analyse et synthèse.

Analyse. Soit (u, v) une solution du système.

- $\textbf{En faisant la différence des deux équations, il vient } (a-b)u = P(a) P(b), d'où l'on tire \\ u = \frac{P(a) P(b)}{a-b} \ car \ a \ et \ b \ ont \ été \ supposés \ distincts.$
- ▶ La première équation donne alors

$$v = P(a) - au = P(a) - a\frac{P(a) - P(b)}{a - b} = \frac{aP(b) - bP(a)}{a - b}.$$

Synthèse. Réciproquement, on vérifie directement que $(\mathfrak{u},\mathfrak{v})=\left(\frac{P(\mathfrak{a})-P(\mathfrak{b})}{\mathfrak{a}-\mathfrak{b}},\frac{\mathfrak{a}\,P(\mathfrak{b})-\mathfrak{b}\,P(\mathfrak{a})}{\mathfrak{a}-\mathfrak{b}}\right)$ est bien solution du système.

Notre système a donc une unique solution : $(\mathfrak{u}, \mathfrak{v}) = \bigg(\frac{P(\mathfrak{a}) - P(\mathfrak{b})}{\mathfrak{a} - \mathfrak{b}}, \frac{\mathfrak{a}\,P(\mathfrak{b}) - \mathfrak{b}\,P(\mathfrak{a})}{\mathfrak{a} - \mathfrak{b}}\bigg).$

Ainsi,

$$R = \frac{P(a) - P(b)}{a - b}X + \frac{aP(b) - bP(a)}{a - b}$$

(qui est bien l'expression de l'unique polynôme de degré ≤ 1 valant P(a) en a et P(b) en b).

Autocorrection F.

En calculant les premières valeurs, on conjecture rapidement que

$$\forall n \in \mathbb{N}, P_n = k^n X^k$$
.

On montre alors facilement cette propriété par récurrence.

Autocorrection G.

▶ Par combinaison linéaire, le polynôme $P = \sum_{k=0}^{n} L_k$ appartient à $K_n[X]$ et vérifie, pour tout $j \in [0, n]$,

$$P(x_j) = \sum_{k=0}^{n} L_k(x_j) = \sum_{k=0}^{n} \delta_{k,j} = 1.$$

Les polynômes P et 1, éléments de $K_n[X]$, coïncident donc en n+1 points, donc P=1.

▶ De même, $Q = \sum_{k=0}^{n} x_k L_k$ appartient à $K_n[X]$ et vérifie, pour tout $j \in [0, n]$,

$$Q(x_j) = \sum_{k=0}^{n} x_k L_k(x_j) = \sum_{k=0}^{n} x_k \, \delta_{k,j} = x_j,$$

donc Q et $X \in K_n[X]$ coïncident en n+1 points, et sont donc égaux.

Autocorrection H.

On a

• P(1) = 1 - (2n + 1) + (2n + 1) - 1 = 0, donc 1 est racine de P.

•
$$P' = (2n+1)X^{2n} - (2n+1)(n+1)X^n + (2n+1)nX^{n-1}$$
, donc

$$P'(1) = (2n + 1) - (2n + 1)(n + 1) + (2n + 1)n$$

= 0,

donc 1 est racine de P'.

• $P'' = (2n+1)(2n)X^{2n-1} - (2n+1)(n+1)nX^{n-1} + (2n+1)n(n-1)X^{n-2}$ donc

$$\begin{split} P''(1) &= (2n+1)(2n) - (2n+1)(n+1)n + (2n+1)n(n-1) \\ &= (2n+1)n\left[2 - (n+1) + (n-1)\right] \\ &= 0, \end{split}$$

donc 1 est racine de P".

• $P''' = (2n+1)(2n)(2n-1)X^{2n-2} - (2n+1)(n+1)n(n-1)X^{n-2} + (2n+1)n(n-1)(n-2)X^{n-3}$ donc

$$\begin{split} P'''(1) &= (2n+1)(2n)(2n-1) - (2n+1)(n+1)n(n-1) + (2n+1)n(n-1)(n-2) \\ &= (2n+1)n\left[2(2n-1) - (n+1)(n-1) + (n-1)(n-2)\right] \\ &= (2n+1)n\left[4n-2 - (n-1)\left[(n+1) - (n-2)\right]\right] \\ &= (2n+1)n(n+1) \neq 0, \end{split}$$

donc 1 n'est pas racine de P'''.

D'après le lien avec les dérivées, on a donc $\mu_1(P) = 3$.

Autocorrection I._

Première méthode. On utilise la formule du binôme de Newton :

$$(X+1)^n - nX - 1 = \sum_{k=0}^n \binom{n}{k} X^k - nX - 1$$

$$\begin{split} &= \sum_{k=2}^n \binom{n}{k} X^k \\ &= X^2 \underbrace{\sum_{k=2}^n \binom{n}{k} X^{k-2}}_{\in K[X]}, \end{split}$$

donc ce polynôme est divisible par X^2 .

Deuxième méthode. Notons $P = (X + 1)^n - nX - 1$. On observe :

- que $P(0) = (0+1)^n n \cdot 0 1 = 0$, donc 0 est racine de P;
- que $P' = n(X+1)^{n-1} n$, donc $P'(0) = n1^{n-1} n = 0$.

On a donc $\mu_0(P) \geqslant 2$. Comme $X^{\mu_0(P)}$ divise (par définition) P, on en déduit que X^2 divise P.

Autocorrection J.__

Un calcul direct montre que P(i) = P'(i) = 0.

D'après la caractérisation différentielle de la multiplicité, cela entraı̂ne que i est racine multiple de P, c'est-à-dire $\mu_i(P)\geqslant 2$.

Comme P est un polynôme à coefficients réels, cela entraı̂ne $\mu_{-i}(P) \ge 2$.

On en déduit que $X^2 + 1 = (X + i)(X - i)$ divise P (en utilisant le caractère absolu de la divisibilité).

Autocorrection K.

Comme P divise $Q^2 - Q$, on peut trouver $R \in K[X]$ tel que $Q^2 - Q = RP$.

Pour tout $n \in \mathbb{N}^*$, on note D(n) l'assertion « P divise $Q^n - Q$ ».

Montrons $\forall n \in \mathbb{N}^*, D(n)$ par récurrence.

Initialisation. Pour n = 1, $Q^n - Q = 0$ est divisible par tout polynôme, ce qui montre D(1). **Hérédité.** Soit $n \in \mathbb{N}^*$ tel que D(n). Montrons D(n+1).

On sait que P divise $Q^n - Q$, c'est-à-dire que l'on peut trouver $S \in K[X]$ tel que $Q^n - Q = SP$.

On en déduit $Q^{n+1}-Q^2=QPS$, puis $Q^{n+1}-Q=(Q^{n+1}-Q^2)+(Q^2-Q)=SP+RP=(S+R)P$, ce qui montre D(n+1), et clôt la récurrence.

Autocorrection L.

On utilise ici la notation classique $\zeta_n = \exp\left(i\frac{2\pi}{n}\right)$.

(i) Sur \mathbb{C} : $X^2 + X + 1 = (X - j)(X - \overline{\jmath})$;

Sur \mathbb{R} , le polynôme est irréductible.

(ii) Sur $\mathbb{C}: X^4-4=(X^2-2)(X^2+2)=(X-\sqrt{2})(X+\sqrt{2})(X-\sqrt{2}i)(X+\sqrt{2}i).$

Sur \mathbb{R} : $(X - \sqrt{2})(X + \sqrt{2})(X^2 + 2)$.

(iii) Sur \mathbb{C} : $X^4+1=(X-\zeta_8)(X-\zeta_8^3)(X-\zeta_8^5)(X-\zeta_8^7)$ (les racines sont les racines quatrièmes de -1).

Sur \mathbb{R} , on rassemble les racines conjuguées :

$$\begin{split} X^4 + 1 &= (X - \zeta_8)(X - \zeta_8^3)(X - \zeta_8^5)(X - \zeta_8^7) \\ &= \left[(X - \zeta_8)(X - \zeta_8^7) \right] \left[(X - \zeta_8^3)(X - \zeta_8^5) \right] \\ &= \left(X^2 - \sqrt{2}X + 1 \right) \left(X^2 + \sqrt{2}X + 1 \right). \end{split}$$

$$\text{(iv) Sur } \mathbb{C}: X^6+27=\prod_{\omega\in\mathbb{U}_6}\left(X-\omega\,\mathrm{i}\sqrt{3}\right)=\prod_{\substack{k\in[0,11]\\k\text{ impair}}}\left(X-\sqrt{3}\;\zeta_{12}^k\right).$$

Sur \mathbb{R} (un petit dessin aide),

$$\begin{split} X^6 + 27 &= \left[\left(X - \sqrt{3} \, \zeta_{12} \right) \left(X - \sqrt{3} \, \zeta_{12}^{11} \right) \right] \left[\left(X - \sqrt{3} \, \mathrm{i} \right) \left(X + \sqrt{3} \, \mathrm{i} \right) \right] \left[\left(X - \sqrt{3} \, \zeta_{12}^5 \right) \left(X - \sqrt{3} \, \zeta_{12}^7 \right) \right] \\ &= (X^2 - 3X + 3)(X^2 + 3)(X^2 + 3X + 3). \end{split}$$

(v) Sur \mathbb{C} :

$$(X^{2} - X + 1)^{2} + 1 = \left[\left(X^{2} - X + 1 \right) - i \right] \left[\left(X^{2} - X + 1 \right) + i \right]$$

$$= \left(X^{2} - X + (1 - i) \right) \left(X^{2} - X + 1 + i \right)$$

$$= (X + i)(X - (1 + i))(X - i)(X - (1 - i)).$$

Sur \mathbb{R} :

$$\begin{split} (X^2 - X + 1)^2 + 1 &= \left[(X + i)(X - i) \right] \left[(X - (1 + i))(X - (1 - i)) \right] \\ &= \left(X^2 + 1 \right) \left(X^2 - 2X + 2 \right). \end{split}$$

(vi) On se rend compte (soit successivement soit, si l'on sent l'arnaque, en vérifiant que les premières dérivées du polynôme ont 1 comme racine) que $(X-1)^3$ divise le polynôme. On obtient alors

$$\begin{split} X^5 - 10X^4 + 25X^3 - 25X^2 + 10X - 1 &= (X - 1)^3(X^2 - 7X + 1) \\ &= (X - 1)^3\left(X - \frac{7 + 3\sqrt{5}}{2}\right)\left(X - \frac{7 - 3\sqrt{5}}{2}\right), \end{split}$$

ce qui est à la fois la décomposition dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$.

(vii) L'indication montre qu'il existe une racine z telle que la somme des trois racines vaille 2z. D'après les relations coefficients-racines, cette somme vaut en fait 8, donc on obtient que 4 est racine. Ainsi,

$$X^3 - 8X^2 + 23X - 28 = (X - 4)(X^2 - 4X + 7),$$

ce qui est la décomposition dans $\mathbb{R}[X]$.

La décomposition dans $\mathbb{C}[X]$ s'obtient alors immédiatement :

$$X^3 - 8X^2 + 23X - 28 = (X - 4)(X - (2 + \sqrt{3}i))(X - (2 - \sqrt{3}i)).$$

(viii) L'indication nous permet d'obtenir une factorisation de la forme

$$X^4 + 12X - 5 = (X^2 - 2X + a)(X^2 + bX + c),$$

d'où l'on tire immédiatement b = 2 puis, rapidement, a = 5 et c = -1.

Ainsi,

$$X^4 + 12X - 5 = (X^2 - 2X + 5)(X^2 + 2X - 1) = (X^2 - 2X + 5)(X + 1 + \sqrt{2})(X + 1 - \sqrt{2}),$$

ce qui est la factorisation dans $\mathbb{R}[X]$.

On obtient alors la factorisation dans $\mathbb{C}[X]$:

$$X^4 + 12X - 5 = (X - (1 + 2i))(X - (1 - 2i))(X + 1 + \sqrt{2})(X + 1 - \sqrt{2}).$$