Polynômes

Généralités

Autocorrection A.__

 \mathbf{V}

Autocorrection A. Soit
$$P = X^3 - X^2 + 3X - 1$$
 et $Q = 2X^2 - X + 1$. Calculer PQ , P^2 , Q^2 , $P \circ Q$ et $Q \circ P$.

Autocorrection B.

V

Soit $n \ge 1$. Donner rapidement le degré, le coefficient dominant et le coefficient constant de

$$(X+1)^n + (X-1)^n$$
 et $(X+1)^n - (X-1)^n$.

$$(X+1)^n - (X-1)^n$$

Exercice 1.

 \mathbb{Q}

Déterminer tous les polynômes $P \in K[X]$ tels que

(i)
$$P(2X) = P(X) - 1$$
;

(iii) $P \circ P = P$;

(ii)
$$P(X^2) = (X^2 + 1)P$$
;

(iv) $\exists Q \in K[X] : Q^2 = XP^2$.

Exercice 2.__

On considère la suite de polynômes $(P_n)_{n\in\mathbb{N}}$ définie par

$$P_0 = 1$$
, $P_1 = (-2X)$ et

$$\forall n \in \mathbb{N}, P_{n+2} = -2XP_{n+1} - 2(n+1)P_n.$$

- 1. Calculer P₂, P₃ et P₄.
- 2. Déterminer, pour tout $n \in \mathbb{N}$, le degré et le coefficient dominant de P_n .
- 3. Montrer que les polynômes constituant la suite $(P_n)_{n\in\mathbb{N}}$ sont alternativement pairs et impairs (en tant que fonctions polynomiales).
- 4. Déterminer, pour tout $n \in \mathbb{N}$, $P_{2n+1}(0)$.
- 5. Déterminer, pour tout $n \in \mathbb{N}$, $P_{2n}(0)$.

Exercice 3.__

 \mathbf{V}

1. Soit $P \in K[X]$.

Montrer qu'il existe un unique couple $(R_0, R_1) \in K[X]^2$ tel que $P = R_0(X^2) + X R_1(X^2)$.

2. Soit $P, Q \in K[X]$ tels que $P(X)^2 = Q(X^2)$.

Montrer qu'il existe $R \in K[X]$ tel que $P = R(X^2)$ ou $P = XR(X^2)$.

Exercice 4⁺._____

- 1. Si $p \in \mathbb{N}^*$, que vaut $S_p = \sum_{z \in \mathbb{U}_n} z^p$?
- 2. Soit $P = \sum_{k=0}^{d} a_k X^k \in \mathbb{C}[X]$ de degré $d \geqslant 1$. Montrer $\exists z \in \mathbb{U} : |P(z)| \geqslant \max_{i=0}^{d} |a_i|$.

Exercice 5⁺⁺.____

Soit $P \in \mathbb{C}[X]$, de degré < n.

1. Pour tout $k \in [0, n-1]$, calculer $\frac{1}{n} \sum_{\omega \in \mathbb{U}_n} P(\omega) \, \omega^{-k}$.

2. On suppose maintenant $P \in \mathbb{Z}[X]$, P(0) = 1 et $\forall \omega \in \mathbb{U}_n, P(\omega) \in \mathbb{R}_+$.

Montrer que les coefficients de P appartiennent tous à $\{0, -1, 1\}$.

Exercice 6⁺._____

0

Soit $n \in \mathbb{N}$ et $P,Q \in \mathbb{R}[X]$ deux polynômes différents de degré n. Montrer que

$$\deg\left(P^3-Q^3\right)\geqslant 2n.$$

Le résultat reste-t-il vrai si $P, Q \in \mathbb{C}[X]$?

Exercice 7⁺.

Soit $P \in K[X]$. Montrer qu'il existe $Q \in K[X]$ tel que P(P(X)) - X = Q(X)(P(X) - X).

Exercice 8⁺._____

Alice et Bob jouent ensemble : Bob pense à un polynôme P à coefficients dans $\mathbb N$ et Alice doit le deviner. À chaque tour, Alice choisit un entier $k \in \mathbb Z$ et Bob lui donne la valeur de P(k). En combien de tours Alice (qui sait dès le début que les coefficients de P sont dans $\mathbb N$, mais n'a pas plus d'information sur ce polynôme ou son degré) peut-elle deviner P?

Formule de convolution de Vandermonde

Exercice 9^+ (Formule de convolution de Vandermonde). \blacksquare Soit $n \in \mathbb{N}$.

1. Soit $p, q \in \mathbb{N}$. En calculant de deux façons différentes le produit $(1+X)^p(1+X)^q$, montrer la formule de convolution de Vandermonde :

$$\sum_{k=0}^{n} \binom{p}{k} \binom{q}{n-k} = \binom{p+q}{n}.$$

2. En déduire la valeur de $\sum_{k=0}^{n} {n \choose k}^2$.

Exercice 10⁺⁺.

Soit $n \ge 1$. Montrer

$$\sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{k} - \binom{n}{k-1}^2 = \frac{1}{n+1} \binom{2n}{n}.$$

Exercice 11^{++} .

Soit $n \in \mathbb{N}^*$.

- 1. Montrer l'identité de De Moivre (1756) : $\sum_{k=0}^{n} k \binom{2n}{n+k} = n \binom{2n-1}{n}.$
- $\text{2. En d\'eduire les valeurs de} \sum_{0\leqslant k,\ell\leqslant n} \max(k,\ell) \binom{n}{k} \binom{n}{\ell} \text{ et } \sum_{0\leqslant k,\ell\leqslant n} \min(k,\ell) \binom{n}{k} \binom{n}{\ell}.$

Racines

Autocorrection C.
Déterminer tous les polynômes tels que $\forall k \in \mathbb{N}, P(k) = k^3$.
Exercice 12.
Montrer que tout polynôme de degré impair à coefficients réels possède (au moins) une racine réelle.
Exercice 13 ⁺⁺ . Soit $a, b, c, d, e \in \mathbb{R}$. On note $P = aX^4 + bX^3 + cX^2 + dX + e$ et $Q = aX^2 + (c - b)X + e - d$.
Soit $a, b, c, d, e \in \mathbb{R}$. On note $P = aX^4 + bX^3 + cX^2 + dX + e$ et $Q = aX^2 + (c - b)X + e - d$.
Montrer que si Q possède une racine réelle $r > 1$, alors P possède une racine réelle.
1 ~1
Exercice 14 ⁺ .
Exercice 14 ⁺ . Soit $P \in \mathbb{Q}[X]$ tel que $P(\sqrt{2}) = 0$. Montrer que $P(-\sqrt{2}) = 0$.
Exercice 15.
1. Montrer que tout polynôme $P \in \mathbb{C}[X]$ tel que $P(X + 1) = P(X)$ est constant.
2. Résoudre l'équation $P(X+1) - P(X) = X$, d'inconnue $P \in \mathbb{C}[X]$.
Exercice 16.
Soit $P \in \mathbb{C}[X]$ tel qu'il existe une infinité de réels α tels que $P(\alpha) \in \mathbb{R}$. Montrer que $P \in \mathbb{R}[X]$.
Exercice 17
Trouver tous les polynômes $P \in \mathbb{R}[X]$ tels que $\forall x, y \in \mathbb{R}, P(xy) = P(x) P(y)$.
F . 10
Exercice 18. Déterminer tous les polynômes $P \in \mathbb{C}[X]$ tels que $(X + 1) P(X) = X P(X + 2)$.
Determine tous les polynomes $\Gamma \in \mathbb{C}[X]$ tels que $(X + \Gamma) \Gamma(X) = X \Gamma(X + 2)$.
Exercice 19 (Polynômes de Čebyšëv de première espèce).
Exercice 15 (1 oryholics de Cebysev de première espece).
$1. \ \ Soit \ n \in \mathbb{N}. \ Montrer \ qu'il \ existe \ un \ unique \ T_n \in \mathbb{R}[X] \ tel \ que \ \forall \theta \in \mathbb{R}, cos(n\theta) = T_n(cos \theta).$
2. Montrer $\forall n \in \mathbb{N}$, $T_{n+2} = 2XT_{n+1} - T_n$.
3. Pour tout $n \in \mathbb{N}$, déterminer :
▶ le degré et le coefficient dominant de T _n ;
les racines de T_n , d'abord dans $[-1,1]$, puis dans \mathbb{C} .
res racines de T_n , d'aboid dans $[-1, 1]$, puis dans C .
Exercice 20 ⁺ .
Exercice 20 ⁺ . Soit $P, Q, R \in \mathbb{R}[X]$ tels que $Q \circ P = R \circ P$.
1. Montrer que si P n'est pas constant, alors $Q = R$.
2. Montrer que l'on ne peut pas étendre la question précédente à tous les polynômes P.
Exercice 21 ⁺
1. Déterminer les polynômes $P \in \mathbb{R}[X]$ tels que $\forall x \in [0, 1], P(x) = 1$.
2. Même question pour les polynômes $P \in \mathbb{C}[X]$.
Exercice 22 ⁺⁺ .
Exercice 22 ⁺⁺ . Déterminer les polynômes $P \in \mathbb{C}[X]$ vérifiant $\forall z \in \mathbb{U}, P(z) \in \mathbb{U}$.
Determine to polynomes $1 \in \mathcal{O}_{[X]}$ vermant $\forall 2 \in \mathcal{O}_{[X]} \setminus \mathcal{O}_{[X]}$

Rigidité des fonctions polynomiales

Autocorrection D.

 \mathbf{S}

Déterminer tous les polynômes $P \in \mathbb{R}[X]$ tels que $\forall n \in \mathbb{N}, P(n) = n^2 + (-1)^n$.

Exercice 23.

1. Montrer que la fonction exp : $\mathbb{R} \to \mathbb{R}$ n'est pas polynomiale.

2. Montrer que la fonction $c: \left\{ \begin{matrix} \mathbb{C} \to \mathbb{C} \\ z \mapsto \overline{z} \end{matrix} \right.$ n'est pas polynomiale.

3. (a) Montrer que $\cos : \mathbb{R} \to \mathbb{R}$ n'est pas une fonction polynomiale.

(b) Montrer que $\cos_{|\pi\mathbb{Z}}$ n'est pas une fonction polynomiale.

(c) Montrer que $\cos_{[0,2\pi]}$ n'est pas une fonction polynomiale.

(d) Existe-t-il un ensemble infini $E \subseteq \mathbb{R}$ tel que $cos_{|E|}$ soit une fonction polynomiale?

Exercice 24.

Montrer qu'il n'existe pas de polynôme $P \in \mathbb{R}[X]$ tel que

$$\exists A > 0 : \forall x \geqslant A, P(x) = ln(x).$$

Exercice 25⁺._

Montrer qu'il n'existe pas de polynôme $P \in \mathbb{R}[X]$ tel que pour tout $k \in \mathbb{N}^*$,

(i)
$$P(k) = \frac{1}{k}$$
;

(ii)
$$P(k) = \sqrt{k^2 + 1}$$
;

(iii)
$$P(k) = 2^k$$
.

Exercice 26._

Soit $P, Q \in \mathbb{R}[X]$ deux polynômes différents. Montrer que

$$(\exists A \in \mathbb{R} : \forall t \geqslant A, P(t) < Q(t))$$
 ou

ou $(\exists A \in \mathbb{R} : \forall t \geqslant A, P(t) > Q(t))$.

Localisation des racines

Exercice 27 (Borne de Cauchy).

_У

Soit $P = \sum_{k=0}^n \alpha_k X^k$ un polynôme unitaire. On note Z(P) l'ensemble des racines complexes de P.

 $1. \ \ Montrer \ \forall \zeta \in Z(P), |\zeta|^n \leqslant \sum_{k=0}^{n-1} |\alpha_k| \ |\zeta|^k \ et \ en \ d\'eduire \ \forall \zeta \in Z(P) \setminus \{0\}, |\zeta| \leqslant \sum_{\ell=0}^{n-1} \frac{|\alpha_{n-1-\ell}|}{|\zeta|^\ell}.$

 $\text{2. Utiliser la question précédente pour montrer } \forall \zeta \in Z(P), |\zeta| \leqslant \text{max}\left(1, \sum_{k=0}^{n-1} |\alpha_k|\right).$

3. De même, montrer la borne de Cauchy

$$\forall \zeta \in Z(P), |\zeta| \leqslant 1 + max(|\alpha_0|, \dots, |\alpha_{n-1}|).$$

Exercice 28.

Soit $n \geqslant 1$ et E un ensemble de polynômes unitaires de degrés n. Montrer que les assertions suivantes sont équivalentes.

(i) il existe $C_1 > 0$ tel que tous les coefficients de tous les éléments de E ont un module $\leq C_1$;

(ii) il existe $C_2 > 0$ tel que toutes les racines de tous les éléments de E ont un module $\leq C_2$.

Le résultat reste-t-il vrai si les éléments de E ne sont plus supposés unitaires?

Exercice 29⁺⁺ (Théorème d'Eneström-Kakeya)._____

 $X^{\mathbf{Q}}$

Soit $P = a_0 + a_1 X + \dots + a_n X^n \in \mathbb{R}[X]$ tel que $\forall i \in [0, n], a_i > 0$.

- 1. On suppose $a_0 \geqslant a_1 \geqslant \cdots \geqslant a_n$. Montrer que toutes les racines de P sont de module $\geqslant 1$.
- 2. Montrer qu'en général, les racines de P sont toutes dans la couronne

$$C(r,R) = \{ z \in \mathbb{C} \mid r \leqslant |z| \leqslant R \},\,$$

où r (resp. R) est le minimum (resp. maximum) des $\left(\frac{a_k}{a_{k+1}}\right)_{k=0}^{n-1}$.

Division euclidienne

Autocorrection E.

 \mathbf{V}

Soit $P \in K[X]$ et $a,b \in K$ deux scalaires différents. Déterminer le reste dans la division euclidienne de P par (X - a)(X - b) en fonction de a, b, P(a) et P(b).

Exercice 30.

V

Soit $n \in \mathbb{N}^*$. Déterminer le reste de la division euclidienne de A par B dans les cas suivants :

- (i) $A = X^n$ et $B = X^2 3X + 2$;
- (ii) $A = X^n \text{ et } B = (X 1)^2$;
- (iii) $A = (X \sin t + \cos t)^n$ et $B = X^2 + 1$, où t est un réel.

Exercice 31.__

V

Déterminer le reste de la division euclidienne de $X^{42} + X^{1729} + X^{11111}$ par $1 + X + X^2$.

Exercice 32.

Trouver les racines complexes des polynômes suivants.

- $P_1 = X^3 + (i-3)X^2 + (7-2i)X 5(1+i)$, en sachant qu'il a une racine imaginaire pure;
- $P_2 = X^4 + 4iX^2 + 12(1+i)X 45$, en sachant qu'il a une racine réelle et une imaginaire pure.

Exercice 33⁺. Soit $f: x \mapsto \frac{x^3}{x^2 + 2x + 3}$. Déterminer les points entiers de son graphe, c'est-à-dire $\mathbb{Z}^2 \cap \operatorname{gr}(f)$.

Dérivation

Autocorrection F.

V

Soit $k \in \mathbb{N}$. On définit une suite de polynômes $(P_n)_{n \in \mathbb{N}}$ par

$$P_0 = X^k \qquad \text{et} \qquad \forall n \in \mathbb{N}, P_{n+1} = XP_n'.$$

Donner une expression simple pour la suite $(P_n)_{n \in \mathbb{N}}$.

Exercice 34.

 \mathbf{V}

 $\text{Trouver une partie } H \subseteq \mathbb{C}[X] \text{ telle que la dérivation } \begin{cases} H \to \mathbb{C}[X] \\ P \mapsto P' \end{cases} \text{ soit une bijection.}$

Exercice 35._

Soit $P \in \mathbb{C}[X]$. Donner un sens à la somme $\sum_{k=0}^{+\infty} \frac{(-1)^k}{(k+1)!} P^{(k)}(X) X^{k+1}$ et montrer qu'elle définit la « primitive » de P possédant 0 comme racine.

Exercice 36.

 \mathbf{V}

Déterminer tous les polynômes $P \in \mathbb{C}[X]$ tels que

(i)
$$P = P'$$
;

(ii)
$$(P')^2 = 4P$$
.

Exercice 37._

Déterminer les $P \in \mathbb{C}[X]$ tels que P(2X) = P'(X)P''(X).

Exercice 38.

Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que X(X+1)P'' + (X+2)P' - P = 0.

Exercice 39._

Soit $n \in \mathbb{N}^*$. Existe-t-il un polynôme $P \in \mathbb{R}[X]$ de degré n tel que $\forall k \in [0, n-1], P^{(k)}(0) = P^{(k)}(1)$?

Exercice 40^+ . Soit $S = \left\{ (A,B) \in \mathbb{C}[X]^2 \, \middle| \, AB' - BA' = 1 \right\}$. On veut décrire complètement cet ensemble.

- 1. Montrer que $\forall (A, B) \in \mathcal{S}, \forall \lambda \in \mathbb{C}, (A \lambda B, B) \in \mathcal{S}$.
- 2. Soit $(A, B) \in S$ un couple de polynômes non constants.

En examinant les termes dominants, montrer que deg A = deg B.

3. Conclure, à l'aide des deux questions précédentes.

Trouver tous les polynômes $P \in \mathbb{R}[X]$ tels que $\forall k \in \mathbb{Z}, \int_{\cdot}^{k+1} P(t) \, dt = k+1$.

Exercice 42.__

 \mathbf{V}

Exercice 42.

On note $\mathcal{H} = \left\{ P \in \mathbb{R}[X] \middle| \forall x \in \mathbb{R}, P(x) = \frac{1}{2} \int_{x-1}^{x+1} P(t) dt \right\}.$

- 1. (a) Déterminer $\mathcal{H} \cap \mathbb{R}_1[X]$.
 - (b) Montrer $X^2 \notin \mathcal{H}$ et en déduire $\mathcal{H} \cap \mathbb{R}_1[X]$.
- 2. Montrer que \mathcal{H} est stable par dérivation, c'est-à-dire $\forall P \in \mathcal{H}, P' \in \mathcal{H}$.
- 3. Que vaut H?

Exercice 43._

Soit $(A_n)_{n \in \mathbb{N}^*}$ la suite de polynômes définie par

$$A_1=X^2+X \qquad \text{et} \qquad \forall n \in \mathbb{N}^*, A_{n+1}=(X^2+1)A_n+XA_n'.$$

- 1. Pour tout $n \in \mathbb{N}^*$, donner le degré et le terme dominant de A_n .
- 2. Pour tout $n \in \mathbb{N}^*$, déterminer $A_n(0)$.
- 3. En déduire qu'il existe une unique suite $(B_n)_{n\in\mathbb{N}^*}$ de polynômes telle que $\forall n\in\mathbb{N}^*, A_n=XB_n$.
- 4. Calculer B_1 et obtenir une relation de récurrence sur la suite $(B_n)_{n \in \mathbb{N}}$.
- 5. Pour tout $n \in \mathbb{N}^*$, calculer $B_n(0)$ et en déduire $A'_n(0)$.

Exercice 44._

Montrer que la fonction tan est lisse et qu'il existe une suite $(P_n)_{n\in\mathbb{N}}$ de polynômes à coefficients dans \mathbb{N} telle que pour tout $n \in \mathbb{N}$, deg $P_n = n + 1$ et $tan^{(n)} = P_n(tan)$.

Exercice 45.	

- 1. Montrer qu'il existe une unique suite de polynômes réels $(H_n)_{n\in\mathbb{N}}$ telle que, pour tout $n\in\mathbb{N}$, la fonction $g: x\mapsto e^{-x^2}$ soit n fois dérivable, de dérivée n-ième $g^{(n)}: x\mapsto H_n(x)\,e^{-x^2}$.
- 2. Soit $n \in \mathbb{N}$. Déterminer le degré, le terme dominant, et la parité de H_n .
- 3. Montrer $\forall n \in \mathbb{N}, H'_{n+1} = -2(n+1)H_n$.
- 4. En déduire une expression de la suite $(g^{(n)}(0))_{n \in \mathbb{N}}$.

Exercice 46.

 $oldsymbol{\circ}$

Soit $P \in \mathbb{R}[X]$. Montrer que l'on peut trouver $A \in \mathbb{R}$ tel que la fonction polynomiale

$$\begin{cases} [A, +\infty[\to \mathbb{R} \\ t \mapsto P(t) \end{cases}$$

soit monotone.

Exercice 47⁺._

_____♀

Soit $P \in \mathbb{R}[X]$ tel que P induise une application surjective $\mathbb{N} \to \mathbb{N}$. Montrer que P = X.

Exercice 48.____

_₽☑

Soit $P \in \mathbb{R}[X]$ et $a \in \mathbb{R}$ tels que P(a) > 0 et, pour tout $k \in \mathbb{N}^*$, $P^{(k)}(a) \geqslant 0$.

Montrer que P ne possède pas de racines dans $[a, +\infty[$.

Interpolation de Lagrange

Autocorrection G._

__✓

Soit $x_0, \ldots, x_n \in K$ tous distincts.

On note, pour tout $k \in [0, n]$, L_k l'unique polynôme de degré n tel que $\forall j \in [0, n]$, $L_k(x_j) = \delta_{k,j}$.

Identifier les polynômes $\sum_{k=0}^{n} L_k$ et $\sum_{k=0}^{n} x_k L_k$.

Exercice 49.

$$\text{Montrer } \forall n \in \mathbb{N}, \exists \lambda_0, \dots, \lambda_n \in \mathbb{R} : \forall P \in \mathbb{R}_n[X], \int_0^1 P(t) \ dt = \sum_{k=0}^n \lambda_k \, P\left(\frac{k}{n}\right).$$

Exercice 50.

______✓

Soit $P \in \mathbb{R}_n[X]$ tel que $\forall k \in [0, n], P(k) = \frac{k}{k+1}$.

- 1. Déterminer le polynôme Q = (X + 1)P X.
- 2. En déduire P(n + 1).

Exercice 51⁺._

_____♀

Soit $r \in \mathbb{R}$. Soit $P \in \mathbb{R}_{n-1}[X]$ tel que $\forall k \in [1, n], P(k) = r^k$. Calculer P(n+1).

Exercice 52⁺.__

Q

Soit $P \in \mathbb{R}_n[X]$ tel que $\forall k \in \llbracket 1, n+1 \rrbracket, P(k) = \frac{1}{k}.$ Calculer P(0).

Exercice 53⁺._

Soit $P \in \mathbb{C}[X]$ unitaire de degré n. Calculer $\sum_{k=0}^n \frac{P(k)}{\prod_{j \neq k} (k-j)}$.

Multiplicité, polynômes scindés

Autocorrection H.
Autocorrection H. Soit $n \geqslant 3$ et $P = X^{2n+1} - (2n+1)X^{n+1} + (2n+1)X^n - 1 \in \mathbb{R}[X]$. Calculer l'ordre de multiplicité $\mu_1(P)$.
Exercice 54.
Exercice 54. Montrer que $\sum_{k=0}^{n} \frac{X^k}{k!}$ n'a que des racines simples sur \mathbb{C} .
Exercice 55^+ . Soit $P(X) = nX^n - X^{n-1} - \dots - X - 1$.
Soit $P(X) = nX^n - X^{n-1} - \dots - X - 1$.
Montrer qu'à part 1, les racines de P sont de module < 1 puis que P est à racines simples.
Exercice 56.
Soit $n \in \mathbb{N}^*$ et $P \in \mathbb{R}[X]$ de degré n simplement scindé.
Montrer que les racines complexes du polynôme $P^2 + 1$ dans $\mathbb C$ sont toutes simples.
Exercice 57 ⁺ .
Exercice 57^+ . Soit $P \in \mathbb{R}[X]$ simplement scindé. Montrer que P n'a pas deux coefficients consécutifs nuls.
Exercice 58 ⁺ .
Soit $P \in \mathbb{R}[X]$ non constant, simplement scindé.
Montrer que pour tout $\alpha \in \mathbb{C}$, les racines complexes de $P-\alpha$ sont de multiplicité au plus 2.
Exercice 59 ⁺ .
Soit $P \in \mathbb{R}[X]$ scindé. Montrer que toute racine multiple de P' est racine de P .
Exercice 60 ⁺
Exercice 60^+ . Soit $P \in \mathbb{R}[X]$ simplement scindé, et $a \in \mathbb{R}$. Montrer que $P' + aP$ est simplement scindé.
Exercice 61.
Déterminer les polynômes $P \in \mathbb{R}[X]$ tels que $\forall x \in \mathbb{R}_+^*, \left P(x) P\left(\frac{1}{x}\right) \right \leqslant 1$.
Exercice 62 ⁺ .
Déterminer les $(P,Q) \in \mathbb{C}[X]^2$ tels que $\forall z \in \mathbb{C}, P(z) \leq Q(z) $.
Relations coefficients-racines
Exercice 63.
Soit $n \in \mathbb{N}^*$.
Utiliser les relations de Viète pour recalculer $\sum_{\omega \in \mathbb{U}_n} \omega$, puis pour calculer $\prod_{\omega \in \mathbb{U}_n} \omega$ et $\sum_{\omega \in \mathbb{U}_n} \omega^2$.
Exercice 64.
Soit $P \in \mathbb{C}[X]$ de degré $\geqslant 2$. Montrer que la moyenne des racines de P' (comptées avec multiplicité) est la même que celle des racines de P .

 \mathbf{V}

Exercice 65.

Soit $n \ge 2$ et $P = \prod_{i=1}^{n} (1 + X^{i})$. Calculer $P(e^{i\frac{2\pi}{n}})$.

Exercice 66⁺.___

 \mathbf{V}

Soit $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$.

- 1. Résoudre dans \mathbb{C} l'équation $(z+1)^n = e^{i 2n a}$.
- 2. En déduire une factorisation du polynôme $P = (X + 1)^n e^{i 2n a}$.
- 3. En déduire $\prod_{k=0}^{n-1} \sin\left(\alpha + \frac{k\pi}{n}\right) = \frac{\sin(n\alpha)}{2^{n-1}}.$
- 4. En déduire la valeur de $\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right)$.

Exercice 67⁺ (Sommes de Newton).

- 1. Exprimer $x^2 + y^2 + z^2$ et $x^3 + y^3 + z^3$ en fonction de $\sigma_1 = x + y + z$, $\sigma_2 = xy + xz + yz$ et $\sigma_3 = xyz$.
- 2. Résoudre le systèmes suivants, d'inconnues x, y, $z \in \mathbb{C}$ (ou \mathbb{C}^*):

$$\begin{cases} x + y + z = 1 \\ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1 \\ xyz = -4. \end{cases} \begin{cases} x + y + z = 2 \\ x^2 + y^2 + z^2 = 14 \\ x^3 + y^3 + z^3 = 20. \end{cases}$$

Exercice 68⁺.__

 \mathbf{V}

- 1. Soit $P \in \mathbb{C}[X]$, de degré n. On note ses racines (répétées avec multiplicité) z_1, \ldots, z_n et on les suppose non nulles. Calculer $\sum_{i=1}^{n} \frac{1}{z_i}$ en fonction des coefficients de P.
- 2. Calculer $\sum_{i=\pi 1}^{\pi} \frac{1}{2-\omega}$.

Exercice 69⁺.

On note cot : $x \mapsto \frac{\cos x}{\sin x}$ la fonction cotangente.

- 1. Montrer l'existence d'un polynôme $P_n \in \mathbb{R}_n[X]$ tel que $\forall t \in \left]0, \frac{\pi}{2}\right[, P_n(\cot^2 t) = \frac{\sin\left((2n+1)t\right)}{\sin^{2n+1}t}$.
- 2. Déterminer les racines de P_n et calculer leur somme.
- 3. Montrer que $\forall t \in \left]0, \frac{\pi}{2}\right[, \cot^2 t \leqslant \frac{1}{t^2} \leqslant 1 + \cot^2 t$ et en déduire la valeur de $\zeta(2) = \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k^2}$.

Exercice 70⁺.____

Soit $P = X^3 - 11X + 12$.

- 1. Montrer que P possède trois racines réelles a, b et c tels que -4 < a < -3 et 1 < b < 2 < c < 3.
- 2. Calculer $S = \arctan(a) + \arctan(b) + \arctan(c)$.

Divisibilité

	_
Autocorrection I. Montrer par deux méthodes différentes que X^2 divise $(X + 1)^n - nX - 1$ pour tout $n \in \mathbb{N}$.	_☑
Worther par deax methodes differences que X divise (X + 1) 12X 1 pour tout it C 18.	
Autocorrection J.	_🗹
Autocorrection J. Montrer que $(X^2 + 1)^2$ divise $3X^{11} - 2X^{10} - 4X^8 - 8X^7 - 2X^6 - 4X^5 + X^3$.	
Autocorrection K.	_☑
Soit $P, Q \in K[X]$. On suppose que P divise $Q^2 - Q$.	
Montrer que pour tout $n \in \mathbb{N}^*$, P divise $Q^n - Q$.	
Exercice 71.	
Trouver tous les couples $(\lambda,\mu)\in K^2$ tels que le polynôme X^2+2 divise $X^4+X^3+\lambda X^2+\mu X+2$.	
Exercice 72.	
Trouver les $a \in \mathbb{C}$ tels que le polynôme $X^4 - X + a$ soit divisible par $X^2 - aX + 1$.	
Exercice 73 ⁺	
Soit $\alpha_0,\ldots,\alpha_{n-1}\in\mathbb{N}$ des entiers tels que $\forall k\in \llbracket 0,n-1\rrbracket,\alpha_k\equiv k\ (mod\ n).$	
Montrer que $\sum_{k=0}^{n-1} X^k$ divise $\sum_{k=0}^{n-1} X^{\alpha_k}$.	
Exercice 74.	_€
Soit $n \in \mathbb{N}$. Le polynôme $(X+1)^{6n+1} - X^{6n+1} - 1$ est-il divisible par $(X^2 + X + 1)^2$?	
Exercice 75.	
1. Soit $P \in K[X]$.	
(a) Pour tout $k \in \mathbb{N}$, montrer que $P - X$ divise $P^k - X^k$.	
(b) En déduire que $P - X$ divise $P \circ P - X$.	
2. Déterminer les racines complexes du polynôme $(X^2 + 3X + 1)^2 + 3X^2 + 8X + 4$.	
Exercice 76 ⁺ .	
Soit $P,Q\in\mathbb{C}[X]$ et $\mathfrak{m}\in\mathbb{N}^*$. Montrer que P divise Q si et seulement si $P(X^\mathfrak{m})$ divise $Q(X^\mathfrak{m})$.	
Exercice 77 ⁺	
Pour tout $n \in \mathbb{N}^*$, on considère le polynôme complexe $P_n = X^n - 1.$ Soit $a,b \geqslant 2.$	
1. Montrer que a divise b si et seulement si P_a divise P_b .	
2. Montrer que a et b sont premiers entre eux si et seulement si P_a P_b divise $(X-1)P_{ab}$.	
Exercice 78.	_🗹
Trouver un polynôme $P \in \mathbb{R}[X]$ de degré 5 tel que $(X-1)^3$ divise $P+1$ et $(X+1)^3$ divise $P-1$.	
Exercice 79.	
Déterminer quels polynômes $P \in K[X]$ sont divisibles par leur dérivée.	

Exercice 80.

Dans les trois questions suivantes, on donne deux polynômes $P,Q\in\mathbb{C}[X]$, et on demande de déterminer le reste de P dans la division euclidienne par Q.

(i)
$$P = X^{100}$$
 et $Q = (X - 1)^3(X + 1)$;

(ii)
$$P = X^{2n}$$
 et $Q = (X^2 + 1)^2$;

(iii)
$$P = (X+1)^{2n+1} - X^{2n+1}$$
 et $Q = X^2 + X + 1$.

Exercice 81⁺ (Théorème de De Bruijn).

Soit $a \le b \le c$ et $A \le B \le C$ des entiers $\geqslant 1$. On s'intéresse dans cet exercice à la possibilité de paver un pavé de taille $A \times B \times C$ par des briques de taille $a \times b \times c$. Donnons des définitions précises.

- ▶ Une *brique* est une partie de \mathbb{N}^3 de la forme $\mathcal{B} = [x, x'] \times [y, y'] \times [z, z']$.
- ▶ La *taille* d'une telle brique sera le triplet de ses trois « dimensions » x' x + 1, y' y + 1, z' z + 1, rangées par ordre croissant. Par exemple, $[3, 5] \times [1, 6] \times [2, 4]$ est une brique de taille (3, 3, 6).
- ▶ On se demande si le pavé $P = [1, A] \times [1, B] \times [1, C]$ de taille (A, B, C) peut s'écrire comme union disjointe de briques de taille (a, b, c): on dira alors pour simplifier que P est (a, b, c)-pavable.
 - 1. Montrer que le pavé de taille (5, 6, 6) n'est pas (1, 2, 4)-pavable.

Étant donné une partie finie $E\subseteq \mathbb{N}^3$, on définit son poids $w(E)=(X-1)^3\sum_{(i,j,k)\in E}X^{i+j+k}\in \mathbb{R}[X].$

- 2. Calculer le poids w(P) du pavé $P = [1, A] \times [1, B] \times [1, C]$.
- 3. Montrer que si P est (a, b, c)-pavable, alors $(X^a 1)(X^b 1)(X^c 1) \mid w(P)$.
- 4. Montrer que le pavé de taille (10, 10, 10) n'est pas (1, 2, 4)-pavable
- 5. Montrer que le pavé de taille (7, 8, 9) n'est pas (1, 2, 4)-pavable.
- 6. Montrer le *théorème de De Bruijn* (1969) : si α divise b et b divise c, alors P est (α, b, c) -pavable si et seulement si, quitte à échanger A, B et C, on a $\alpha \mid A$, $b \mid B$ et $c \mid C$.

Théorème de D'Alembert-Gauss et factorisations

Autocorrection L.

Donner la factorisation dans $\mathbb{C}[X],$ puis dans $\mathbb{R}[X],$ des polynômes suivants :

(i)
$$X^2 + X + 1$$
;

(iv)
$$X^6 + 27$$
;

(ii)
$$X^4 - 4$$
;

(v)
$$(X^2 - X + 1)^2 + 1$$
;

(iii)
$$X^4 + 1$$
;

(vi)
$$X^5 - 10X^4 + 25X^3 - 25X^2 + 10X - 1$$
;

- (vii) $X^3 8X^2 + 23X 28$, en sachant que la somme de deux des racines est égale à la troisième;
- (viii) $X^4 + 12X 5$, en sachant qu'il y a deux racines dont la somme vaut 2.

Exercice 82.

Factoriser les polynômes suivants sur \mathbb{R} .

(i)
$$X^4 + X^2 + 1$$
;

(ii)
$$X^4 + X^2 - 6$$
;

(iii)
$$X^8 + X^4 + 1$$
.

Exercice 83.

Soit $n \in \mathbb{N}$ et $a \in \mathbb{R}$. On pose $P = X^{2n} - 2\cos(na)X^n + 1$.

- 1. Déterminer la décomposition de P en facteurs irréductibles dans $\mathbb{C}[X]$.
- 2. Montrer que si P possède une racine réelle, alors $P = X^{2n} \pm 2X^n + 1$.
- 3. Déterminer la décomposition de P en facteurs irréductibles dans $\mathbb{R}[X]$.

Exercice 84._

On considère le polynôme $P = (\overline{1 - X^2})^3 + 8X^3$.

- 1. Déterminer les solutions complexes de l'équation $\left(\frac{1-z^2}{2z}\right)^3 = -1$.
- 2. En déduire la factorisation du polynôme P sur \mathbb{C} , puis sur \mathbb{R} .

Exercice 85⁺.____ Ŷ

Déterminer tous les polynômes $P \in \mathbb{C}[X]$ tels que $P(X^2) = P(X) P(X-1)$.

Exercice 86⁺.____ **₽** Soit $n \in \mathbb{N}^*$. On considère le polynôme $P = \sum_{k=1}^n X^k$.

- 1. Factoriser P sur \mathbb{C} .
- 2. En déduire la valeur de $\prod_{k=1}^{n} \sin\left(\frac{k\pi}{n+1}\right)$.

Exercice 87⁺⁺.

Calculer $\prod_{k=1}^{n} \left(5 - 4\cos\left(\frac{k\pi}{n}\right)\right)$. Ŷ

Exercice 88 $^+$ (Positivstellensatz sur \mathbb{R}). **₽**

- 1. Soit $\mathbb{S}=\left\{A^2+B^2\,\Big|\,A,B\in\mathbb{R}[X]\right\}$. Montrer que \mathbb{S} est stable par produit.
- 2. Soit $P \in \mathbb{R}[X]$. Montrer l'équivalence $P \in S \Leftrightarrow \forall x \in \mathbb{R}, P(x) \geqslant 0$.

Exercice 89⁺⁺ (Positivstellensatz sur \mathbb{R}_+). Soit $P \in \mathbb{R}[X]$. Montrer $(\forall x \in \mathbb{R}_+, P(x) \geqslant 0) \Leftrightarrow (\exists A, B \in \mathbb{R}[X] : P = A^2 + XB^2)$.

Exercice 90⁺. X(PC)Trouver les polynômes $P \in \mathbb{C}[X]$ tels que P et $P \circ P$ aient exactement les mêmes racines.