Lycée Henri-IV (PCSI) 23 janvier 2026

Cinquiéme composition de mathématiques [corrigé]

Exercice 1

On fixe dans cet exercice p € R. On considere alors une suite (u, )nen définie par
up =0, w =1 et  VneNuy=(1+pJur —pun.
1. Déterminer, en fonction de p, une expression simple de la suite u.

Le polynome caractéristique de cette relation de récurrence est X2—(1+p)X+p=X—-p)(X=1).1
Yy a ainsi deux cas a considérer.

» Dans le cas générique ot p # 1, on sait qu’il existe R, S € R tels que (un)neny = (Rp™ +S), -
L’examen des premiéres valeurs (et la résolution d'un petit systéme linéaire) permettent de montrer

1 1
que R = o1 etS——F.

.. pt—1
Ainsi, (Un)nen = :
p—= 1 neN

» Dans le cas exceptionnel ot p = 1, on sait qu’il existe A, B € R tels que (un)nen = (An+ B)
L'examen des premiéres valeurs est alors immédiat et montre que (Un)nen = (n)n N’

neN’

n—1
Remarque. Je n'ai pas vraiment fait expreés mais on voit que dans tous les cas, (Un )neny = < pk> .
k=0 neN

2. Pour quelles valeurs de p a-t-on Vn € Nyu, > 0?

En utilisant la relation de récurrence (ou la remarque a la fin de la premiere question), u; = 1+ p. Ainsi,
une condition nécessaire pour que u soit a valeurs positives est que p > —1.

Montrons que, réciproquement, cette condition suffit. Supposons p > —1.

» Supposons p € [—1,1[. Soit n € N.
On a alors ‘p“‘ = |p|"™ < 1, si bien que p™ € [—1,1]. On en déduit que p" —1 < —letp—1<0,

o pt—1
si bien que u, = pj > 0.
» Evidemment, sip =1, (Un)nen = (N)nen est 4 valeurs positives.
n—1
» Tout aussi évidemment, si p > 1, on a pour tout n € N, u,, = pp ] > 0, car numérateur et

dénominateur sont tous deux positifs.

Ainsi, l'assertion Yn € Nyuyn > 0 équivaut a p > —1.
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Exercice 2
2n+1 1
Pour toutn € N, onnote S,, = Z

- VnZ+k

Montrer que (Sp)nen converge et déterminer sa limite.

Soit n € N* (pour éviter de diviser par zéro un peu plus tard).

. 1 )
Pour tout k € [1,2n + 1], la décroissance de — —= sur R, fournit les encadrements

Vit
1 1 1 1 1 1

_ < < < S
n+l  vnZ42n+1  VnZ+k  vnZ4l Va2 on

En sommant ces encadrements, on obtient

2n+1

.
Z <S5, < Z% Zn—H

k=1

Zn—H

. 2n+1 n+1
Comme les deux suites < n > et (1 + > convergent vers 2, le théoreme des gendarmes ga-
n+1 /) en n/ nen

rantit que S, ——— 2.
n—-+oo

Exercice 3

1. Soit v une suite réelle vérifiant vg > 0 etVn € N, v, 1 = /vn.

(a) Montrer que la suite v est a valeurs strictement positives.

11 s’agit d’une récurrence immédiate, basée sur la propriété de stabilité vt € R, v/t > 0, elle-méme
conséquence directe de la stricte croissance de la fonction racine. Je ne donne pas les détails.

(b) Déterminer une expression de (ln(vn))TL oy Qu'en déduit-on sur v, quand n — +00?

» Pour tout n € N, on a In(vny1) = In(y/v) = %ln(vn), donc la suite (ln(vn))neN est

. o ) In(v
géométrique, de raison 7 On en déduit Vn € N,In(v,) = Z(nO).
» L'expression ci-dessus (ou le cours sur les suites géométriques) montre que In(vy) e 0.
n—-+0o0

En passant a 'exponentielle (plus formellement : en utilisant la continuité de I'exponentielle en
0), on en déduit v, ——— 1.
n—-+o0o

Dans la suite de 'exercice, on fixe une suite réelle u vérifiant ug > 0etVn € Nyu, 1 = Vun + ——
2. Montrer qu’a partir d'un certain rang, la suite u est a valeurs dans [1, +-oo[.

Pour tout n € N*, notons P(n) 'assertion u, € [1,+ool.

Montrons ¥Yn € N*,P(n) par récurrence, ce qui conclura.

Initialisation. Ona uy > 0, donc u; =up + 1 > 1. A fortiori, uy € [1,+o0], ce qui montre P(1).
Hérédité. Soit n € N* tel que P(n), c’est-a-dire tel que w, > 1.

Par croissance de la fonction /-, on a un1 = /un —|— > Vu, > 1, ce qui montre P(n + 1)

et clot la récurrence.
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3. Soit n € N. Montrer que si un41 < Uy, alors uni2 < Unyi.

Supposons uni1 < Un. On a alors

1 1
Uny2 — Uny] = (\/unﬂ + Tl-l-2> - <\/un + Tl—l—])

1
Vv Un+1 Vv Un (Tl—i— 1)(Tl T 2) X VUn+1 Vin & O)

par croissance de la fonction /-. Ainsi, Un12 < Upyq.

4. Montrer que la suite u est monotone a partir d’un certain rang.

» S'il existe un rang N € N tel que uny1 < un, la question précédente et une récurrence immédiate
montrent que ¥Vn = Ny un41 < un. Dans ce cas, la suite u décroit a partir d’un certain rang.

» Dans le cas contraire, on a, pour tout N € N, un1 > un, donc la suite u croit (et méme strictement).
5. Montrer que la suite u converge, et déterminer sa limite.
On distingue deux cas, grice a la question précédente.

» Supposons u décroissante a partir d'un certain rang.

On sait que \ est minorée (on a par exemple montré qu’elle était > 1 a partir d’un certain rang). Le
théoreme de la limite monotone entraine alors qu’elle converge.

» Supposons u croissante a partir d’un certain rang. D’apres le théoreme de la limite monotone, il suffit
de montrer que u est majorée.

Supposons par 'absurde que ce ne soit pas le cas. Le théoréme de la limite monotone entraine alors
que Un ——— +00.
n—+o0o0

1 1
On a alors upny1 — Un = /Un + T Un = Vun (1 —un) + — m —o0, par

opérations. On en déduit que w1 —un < 0 a partir d’un certain rang, ce qui contredit la croissance
(a partir d’un certain rang) de .

Dans tous les cas, la suite u converge. Notons { sa limite. Par passage a la limite dans les inégalités
larges,ona > 1.

1
Dans ce cas, on a d’une part u ——— { par extraction et w =\/uy+— — \/E.
! P -+ n—-+oo p e n n-+ T n—+o0

Par unicité de la limite, on a v/t = {, c’est-a-dire ¢ = 1 (car on sait déja que ¢ > 1, donc 0 est exclu), si

bien que up, —— 1.
n—+oo

Remarque. A posteriori, on pourrait montrer que cela entraine en fait que la suite u décroissait a partir
d’un certain rang : le cas croissant ne se produit pas du tout.
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Exercice 4
On note A = {(x,y) eR2 ‘ T<x*+y? < 2} et A= {xy|(x,y) € A}.
1. Dessiner A.
A est le « quart nord-est » d'une « couronne » centrée en 0, comprise entre les cercles de rayon 1 (in-

clus dans A) et V2 (exclu de A). On place quelques points sur le dessin pour le préciser (mais tous
n’appartiennent pas a A).

(0, \ﬁ)

(V2/2,v/2/2)

(1,0 (V2,0

2. Montrer que A possede une borne supérieure et une borne inférieure, et les déterminer.

» Les coordonnées des éléments de A étant positives, on voit directement que A C R.,.. En particulier,
A est non vide (il contient 0, car (1,0) € A) et minoré (par 0).

Cela démontre que A posséde une borne inférieure mais cela fait mieux, en montrant que O est le
minimum de A.

Onadoncinf A = min A = 0.
» Soit p € A. On peut donc trouver (x,y) € A tel que p = xy. On en déduit que

P=xy<
si bien que A est majoré (par 1). Comme il est toujours non vide, il posséde une borne supérieure.

On va montrer que 1 € A, ce qui garantira 1 = sup A.

1 2
On vériﬁe que la suite croissante (1 — n) est a valeurs dans l'intervalle [\zf, 1|. On en dé-
n>4
. 1) N . 1
duit que, pourtoutn > 4,1 < (1 —— | +|1— =) <2,c'est-a-direquelepoint | 1 — —, 1 — —
n n n n

N . 1 T\ 1 N
appartient a A, et donc que le produit (1 — n> (1 — n> = (1 — n> appartient a A.

2
Comme <1 — > ——— 1 (par opérations), on a bien 1 € A, ce qui conclut.
n n—-+oo

. ce que 'on peut faire sans approximation : 8 < 9, donc 2V2<3 par croissance de la racine carrée, donc \ﬁ/ 2 < 3/4.
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Exercice 5

On dira dans cet exercice qu'une suite u € RY est pseudo-décroissante si

YneN,IAN € N:Vp > N,u, <u,.
1. Soitu € RY une suite a valeurs > 0 telle que u, = 0. Montrer que u est pseudo-décroissante.
n—-+oo

Soit n € N. On sait que w, > 0 mais que la suite u converge vers 0.

En particulier, elle doit étre < un a partir d’un certain rang (par « antipassage a la limite ») : on peut
trouver N € N tel que ¥p > N,up, < un.

A fortiori, on a Vp > N,u, < uy, ce qui démontre la pseudo-décroissance de .

2. Soit u € RY une suite pseudo-décroissante et minorée. Montrer que u converge.

On recopie pour ainsi dire la démonstration du théoréme de la limite monotone vue en cours.

Considérons V = {un ‘ neN } Comme la suite w est minorée, I'ensemble V est minoré. Il contient par
ailleurs wy, si bien qu'il est non vide.

On peut alors considérer { = inf V. Montrons que u, —— L.
n—+o0o

Soit ¢ > 0.

Comme € = infV € V, on peut trouver v € V tel que |v — | < e. Puisque { minore V, on a méme
I'encadrement plus précis £ <v < L+ e.

On peut trouver n € N tel que v = .
Par pseudo-décroissance, on peut trouver N € N tel que Vp > N, u, < un.

Soit maintenant p > N.

» Commew, €V et que t minore V, on a £ <.
» Par définition de N, ona up < up <€+ e.

~
On a donc l'encadrement ¢ < w, < {+¢, ce qui donne a fortiori w, —{| < ¢ et conclut la démonstration

de la convergence u, —— {.
n——4oo
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Probléme. Matrices bistochastiques.

Partie I. Généralités.

1. Matrices de permutation.
(a) Soit 0 € I etj € [1,n]. Montrer P; ej = eyj).

Soiti € [1,n]. Ona (en notant [X]; o plutot que [X]; 1 la i-éme coordonnée d'une colonne X € C") :

n
[Po ei]i,. = Z [Polix lejle = [Poli; = Liizo(j))-

=L=1)
Autrement dit, le vecteur colonne Py e; a sa o(j)-ieme coordonnée qui vaut 1, et les autres 0, c’est-
a-dire que P ej = €j).
(b) Soit o, T € X,,. Montrer Ps Py = Pgor.
Soit j € [1,n]. On a d’apres la question précédente

P Prej = Poeq(j) = eo(r(j)) = Poor €.

Autrement dit, C; (Ps Pr) = Cj (Pgor).
Comme cela est vrai pour tout j € [1,n], on a Py Pr = Pgor.

(c) Soit 0 € L. Montrer que P, est inversible et que P;] = PE.

» D’apres la question précédente, on a PoPy1 = Py 1Pe = Piq, | = In, ce qui montre que Py

est inversible, d’inverse Pg‘.
» Il reste & montrer que Po—1 = PL. Soit i,j € [1,n].

Ona [Po-fl]i’j = ]1(1:0'*‘ G)) et [Pg]i,j = [PO']j,i = ]l(j:(f(i))'
Les conditionsi = o~ (j) et j = o(i) étant équivalentes, ces deux coefficients sont bien égaux.

2. Une premiere caractérisation des matrices bistochastiques.
(@) SoitM € My (R). Montrer que M € %, si et seulement siM > 0 et Mu = MTu =

11 suffit de remarquer que

1 n

1 Z[M]Z,]
M| | =3

1

I'égalité Mu = u équivaut donc au fait que la somme des éléments de chaque ligne de M vaut 1.

En appliquant ce fait a M", on voit donc que I'égalité M w = w équivaut au fait que la somme des
éléments de chaque colonne de M vaut 1.

Ainsi,onabien M € B, & (M > 0et Mu=MIu=u).
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(b) En déduire que %, est stable par produit, c’est-a-dire que VM, N € %,, MN € %,.

Soit M,N € %,.

n

» Pour tous i,j € [1,n], ona MNIyj = Y [Mli) NIj > 0, donc MN > 0.
——

k=135 %

» Ona MNu = Mu =1u.
» Ona (MN)Tu =N"™MTu=NTu=u

A l'aide de la question précédente, cela montre que MN € %,,.

3. Donner un exemple de matrice non inversible appartenant a %,.

La matrice] = — | . . .| est clairement bistochastique.

11 1

Le vecteur non nul ey — e; appartient a ker(]), ce qui prouve que | n'est pas inversible.

4. Matrices bistochastiques inversibles. Soit M € %, N GL,(R).

(a) Montrer que M e P sl et seulement si M~ >0.

Puisque M est inversible, MY I'est aussi, et on sait que son inverse est MO~ =M T,

En multipliant & gauche I'égalité Mu = u (resp. M'w = ) par l'inverse de M (resp. M*), on
obtient u =M""u (resp. uw = M Tw).

Cela montre que la matrice M~ posséde automatiquement deux des trois propriétés caractérisant
la bistochasticité.

On adonc M~ € B, si et seulement si M~" > 0.

(b) Supposons M~ € %,. On va montrer qu’alors M est une matrice de permutation.

i. En utilisant I'égalité MM = I, montrer

ii.

Vi,j € [1,n],Mli; #0 = AR : Ci(M ') = Aej.

Soit i,j € [1,n] tel que [M];; # 0.

On souhaite montrer que la i-éme colonne de M™" est proportionnelle i e;, c'est-a-dire que,
pour tout K #j, [Mfl]k,i = 0.

Soit donc k € [1,n] \ {j}. On a alors, en utilisant que les coefficients de M et de M~ sont
positifs :
n

0= = Z[M_]]k,e Mle; = M i Ml donc M xi =0,
= ——

ce qui conclut.

En déduire que, pour tout j € [1,n], il existe un unique i € [1,n] tel que [M];; # 0, et
qu’on a alors [M];; = 1.

Soitj € [1,nl.

Existence. S’il n’existait pas d'indice i € [1,n] tel que [M];; # O, la j-iéme colonne de M
serait nulle, ce qui contredit son inversibilité.
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Unicité. S'il existait iy # 11 € [1,n] tels que [M]; ; et [Ml;, ; soient non nuls, la question
précédente entrainerait I'existence de Ao, A1 € R tels que

CiyM™) =Xe; et Cy(M') =g

o
On en déduit M Ciy(M ') — oCyi, (M) = 0, cest-a-dire M~ (Me, — Aoy, ) = 0, et
on va voir que cela contredit I'inversibilité de M.

» SiAg=0o0uA =0, M aune colonne nulle, donc n’est pas inversible.
» SiAo, A1 # 0, le vecteur Ajei, — Aoei, n'est pas nul, donc ker(M™") n'est pas réduit
au vecteur nul, ce qui montre que M~ n’est pas inversible.

Dans les deux cas, on a obtenu une contradiction, ce qui conclut.

On a donc montré I'existence et I'unicité de i € [1,n] tel que [M];; # 0.

Comme M est bistochastique et que [M];  est le seul coefficient non nul de C;(M), on a néces-
sairement [M];; = 1.

iii. La question précédente montre que 1’on peut trouver une fonction o : [1,n] — [1,n]
telle que Vi,j € [1,n], Mlij; = 1(1_o(j)). Montrer o € L, c’est-a-dire que o est bijective.

» Montrons d’abord que o est injective.
Soit jo,j1 € [1,n] tels que o(jo) = o(j1).
On a donc C;, (M) = Cj, (), d'oit M(ej, — ¢;,) = 0.

Comme M est inversible, cela entraine e;, — e;, = 0, et donc jo = jy.

» (Les théoremes sur les ensembles finis montreront en fait que l'injectivité de o montre
automatiquement sa surjectivité. L'arqument suivant sera donc inutile).

Soit i € [1,n]. Si i n'avait pas d’antécédent, la i-ieme ligne de M serait entierement
nulle. Il en va alors de méme de la i-éme ligne de MM = 1, contradiction manifeste.
L’application o est donc surjective.

5. Propriétés spectrales des matrices bistochastiques. Soit M € %,,.

(a) Montrer que M — I, n’est pas inversible.

On a Mu = u, donc (M — I,)u = 0. Cela montre que le noyau de M — 1, n’est pas réduit au
vecteur nul, et donc que M — 1, n’est pas inversible.

(b) Montrer ¥X € C", || MX]|oo < [ X]]0o0-

Soit X € C"et k € [1,n]. On a donc

IMX] o = > My eXe,o

(in. triang. et M > 0)

(=1 —
X0
n
< (Z[M]k,€> Xl oo
=
< X[ oo- (car M € %,)
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(c) En déduire que pour tout A € C de module > 1, la matrice M — AL, est inversible.

Soit A € C de module > 1.
Soit X € ker(M — AlL,). On a donc (M — AL )X = 0, c’est-a-dire MX = AX.

» D’apres la question précédente, on a |MX||oo < ||X]|co-
» Par ailleurs, [MX]|oo = [|[AX]|co = Al [|X]|oo-

En comparant ces deux informations, on a (]N\| — 1) || X||eo < 0, ce qui montre || X||s = 0.
0
>

Par définition de || - ||oo, on en déduit que tous les coefficients de X sont nuls, c’est-a-dire que X = 0.

On a ainsi montré ker(M — AL, ) = {0}, ce qui montre que M — AL, est inversible, d’apres le critere
nucléaire d'inversibilité.

Partie II. Un processus de diffusion.

6. Diagonalisation d"une matrice de permutation. On définit un élément o € X, par:

n,n] — [1,n]
o: ) i—1 sii>=2
i =
n sii=1.

(a) Montrer que Py = I,.

Une récurrence immédiate montre que Yk € N,Vx € [1,n], (0o ---00)(x) =x —k (mod n).
k fois

En particulier,ona go---o 0 =1idp

n fois

En utilisant la question 1b (et une autre récurrence), on obtient donc Py = Pgo...og = P =I,.

idpi ng

(b) Soit A € C et X € C" un vecteur non nul tels que P;X = AX. Montrer que A € Us,.
Ona P%,X = Py(AX) = APy X = A2X. Par une récurrence immédiate, on a donc

X=PX=A"X donc (A"—1)X=0.

Comme le vecteur X est non nul, on en déduit \™ = 1, ¢’est-a-dire A € Up,.
1

A
(c) Soit A € U,. Montrer que le vecteur X, = A2 vérifie Ps X, = A X,.
)\TL‘—1
Ona
o100 --- 0 A 1
00 1 0 A2 A
P,=(0 00 -+ 0 donc PsXy = A =A A = AX,.

10 0 0 1 AT
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(d) On définit F = (w (k—=1)(e—1 ))) € M, (C) et F la matrice obtenue en remplacant

1<k, i<n
chaque coefficient de F par son conjugué. On remarquera que, pour tout { € [1,n], la

{-ieme colonne de F est Xy (¢_1)-

Calculer le produit F F et en déduire que F € GL,(C).

Avant de se lancer dans le calcul, rappelons que si A € Uy \ {1}, la formule pour la somme des
termes d’une suite géométrique montre que

n—1
T—A"
X __ —
Z}‘ T 1=A =0

(et, évidemment, la somme vaut nsiA = 1).

Soit maintenant k,{ € [1,n]. Ona

[FFly = Z[F]k,j@

n—1 —i_1
x=0 J:X+1

qui vaut donc n si k = £ et 0 sinon.
Autrement dit, ona FE =nl,, ce qui montre que F est inversible, et que F'= %F
(e) Montrer que F'P,F = diag (w(0), w(1),...,w(n —1)).
Soitj € [1,n]. On a Fe; = X j—1), ce qui donne également e; = F_]Xw(]-_”. On a alors

(P*‘P(,F) e = F'PoXyii1)

=w(—1) Fqu(j,” (d’apres la question 6¢)

:w(j_1)e]')

ce qui montre que la j-ieme colonne de F"PF est w(j — 1) ej.

Cela étant valable pour tout j € [1,n], on a F'P,F = diag (w(0), w(1),...,w(n —1)).
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7. Exprimer la relation de récurrence (X) sous la forme Vt € N, X1 = AX(, ot A € My (R) est une

matrice que I'on exprimera a 1’aide de la matrice P,.

Soitt € N.Ona

xn(t) +x2(t)

2
x1(t) +x3(t) o010 -1
— 101 o 0
Xeq= | W Fx® | Z1jo1 0 - 0
2 2 :
1 0 0 - 0
X (t) + (1)
2
P, + P!
En posant A = %, on adoncVt € N, X1 = AX;.

8. En déduire que l'on a Vt € N,X; = F diag(A}, A, ...

nombres réels que 1’on précisera.

x1(t)

X2 (t) T R

xa(t) | = ot P‘f)(t _Pot Py X;.
. 2 2

Xn(t)

A FT X, ot AryAz,..., Ay sont des

La relation Vt € N, X1 = A X, et une récurrence immédiate montrent vt € N, X; = A' Xo.

Il reste simplement a montrer que ¥t € N, A = F diag(A}, AS, ..., AL ) E™!, pour des réels A, Ay .. o An

encore a déterminer.

D’apres la question 6e, on a F'P,F = diag (w(O), w(1),...

,w(n—1)), c’est-a-dire Ps = FAF .

A

—1
En passant a l'inverse, Pg‘ = (FAF_l) =FA'F! donc

Py +P;'  FAF '+ FATF!

A= 2
LA+ ATT
_FTF
-1 -1 _ _ 11
:Fdiag<w(0)+2w(0) )w(])—i—zw(]) )“')w(n 1)+2w(n 1) >F1

= Fdiag <1,cos <2771T> ye.yCOS (T(n—”)) F!

= Fdiag(A1, A2 ., An)F 1,

2
oi, pour tout j € [1,n], on a posé A\; = cos <T?(j — 1)).

Ainsi, pour tout t € N, ona

t
At = <F diag(A1, Az, .. .,mrr‘)
= F diag(A1,A2, ..., An) F!
=F diag (AL, A5, .. AL FY

ce qui conclut.
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9. On suppose n pair. Montrer que la suite (X;)ien ne converge pas.

Le phénomene problématique (de périodicité) se voit sur des petits cas, comme par exemple ici quand
n==6.

S

Soitt € N. On a alors

> ot D =xa(t+ D xalt+ 1)+ x(t+ 1)+ -+ xalt + 1)

kell,n]
k pair
x1(t) +x3(t x3(t) +x5(t x5(t) +x7(t Xn—1(t) +x1(t
) Eslt) | xalt) fxs(t) | xst) 4xr(t) L xn(t) £xalt)
2 2 2 2
=x1(t) +x3(t) +x5(t) + -+ +xn_1(t)
Z xi(t)
kellm]
k impair
et, de méme, Z X (t+ 1) Z X (t
kel1n] ke[1n]
k impair k pair

Vu la valeur de Xo, une récurrence immédiate montre que

0 sitpai
vteN, Y xk(t)={1 e

Kellml st t impair.
k pair

Cela montre que la suite ( Z xk(t)> ne converge pas, d’oit I'on tire que (X¢)ren ne converge pas.
teN

kell,n]
k pair
10. On suppose n impair.
1
(a) Montrer que Xy —— —u.
to+too M

Comme n est impair,ona A = 1etVj € [2,n], 2%(]‘—1) % 0 (mod 7), donc Az, ..., A\ € =1, 1L
En particulier, Vj € [2,nl], )\}‘ = 0.

On en déduit diag (A}, A, ..., Ay) = diag(1,0,...,0).

Pour terminer le calcul, on remarque FXo =, et que les calculs de la question 6d entrainent que

1 1-
F'= —F donc F X, = foozf

12/[13



On a alors

X = F diag(A}, AL, ..., AL F X —F diag(1,0,...,0)F X,
—+00

1 1
= —Fdiag(1,0,...,0)u=—FXy =
n 1ag( y Yy ) )u n 0

(b) Montrer que vVt € N, ‘ 0

1 t
Xi — uH < cos (E) .
n

o9}

Pour toutj € [2,n],onaj—1¢€ [1l,n—1].

» Sij—1¢€ [[1,(n—1)/2]l,ona2—”(j—1) € [2” ”(n—n] = [Z”,n—ﬂ,donc
n n n

n’n
S

Aj = cos (2::(]'—1)) € [cos (7{—%) ,CO 2;)] = [—cos (g) , COS (2;[

_ . s
ce qui entraine [A\j| < cos ( — ).
) n

» Par parité de cosinus, la méme inégalité est valablesij—1 € [(n+1)/2,n—1].

Y1
Remarquons quesiM € M (C)etY = | : | € C", ona, pour tout k € [1,n],
Yn
n
IMY]i1l = | Y Ml yr
=1
n
(Z k(’,|) 1Y ]loo)
donc [MYloo < [[|M]| 11Y]]oos
n
. . n
oit 'on a défini, pour tout M € M,,(C) = r?a1x Z |IM]i el.
=
1 1 1 .
Comme en outre HF XOH = Eu = o on a bien, pour tout t € N,

1 . _ . _
Xt_nUH - HF diag(1,AS, ..., AY) F~' Xo — F diag(1,0, ..., 0)F 1XOHOO

- HF diag(0, A}, ..., ARL) F! XOHOO

< 1) ing, 3%, ... x| 1]
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