
Lycée Henri-IV (PCSI) 23 janvier 2026

Cinquième composition de mathématiques [corrigé]

Exercice 1
On fixe dans cet exercice ρ ∈ R. On considère alors une suite (un)n∈N définie par

u0 = 0, u1 = 1 et ∀n ∈ N, un+2 = (1+ ρ)un+1 − ρun.

1. Déterminer, en fonction de ρ, une expression simple de la suite u.

Le polynôme caractéristique de cette relation de récurrence est X2 − (1 + ρ)X + ρ = (X − ρ)(X − 1). Il
y a ainsi deux cas à considérer.

▶ Dans le cas générique où ρ ̸= 1, on sait qu’il existe R, S ∈ R tels que (un)n∈N = (R ρn + S)n∈N.

L’examen des premières valeurs (et la résolution d’un petit système linéaire) permettent de montrer

que R =
1

ρ− 1
et S = −

1

ρ− 1
.

Ainsi, (un)n∈N =

(
ρn − 1

ρ− 1

)
n∈N

.

▶ Dans le cas exceptionnel où ρ = 1, on sait qu’il existe A,B ∈ R tels que (un)n∈N =
(
An+B

)
n∈N.

L’examen des premières valeurs est alors immédiat et montre que (un)n∈N =
(
n
)
n∈N.

Remarque. Je n’ai pas vraiment fait exprès mais on voit que dans tous les cas, (un)n∈N =

(
n−1∑
k=0

ρk

)
n∈N

.

2. Pour quelles valeurs de ρ a-t-on ∀n ∈ N, un ⩾ 0?

En utilisant la relation de récurrence (ou la remarque à la fin de la première question), u2 = 1+ρ. Ainsi,
une condition nécessaire pour que u soit à valeurs positives est que ρ ⩾ −1.

Montrons que, réciproquement, cette condition suffit. Supposons ρ ⩾ −1.

▶ Supposons ρ ∈ [−1, 1[. Soit n ∈ N.

On a alors
∣∣ρn∣∣ = |ρ|n ⩽ 1, si bien que ρn ∈ [−1, 1]. On en déduit que ρn − 1 ⩽ −1 et ρ − 1 < 0,

si bien que un =
ρn − 1

ρ− 1
⩾ 0.

▶ Évidemment, si ρ = 1, (un)n∈N = (n)n∈N est à valeurs positives.

▶ Tout aussi évidemment, si ρ > 1, on a pour tout n ∈ N, un =
ρn − 1

ρ− 1
⩾ 0, car numérateur et

dénominateur sont tous deux positifs.

Ainsi, l’assertion ∀n ∈ N, un ⩾ 0 équivaut à ρ ⩾ −1.
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Exercice 2

Pour tout n ∈ N, on note Sn =

2n+1∑
k=1

1√
n2 + k

. Montrer que (Sn)n∈N converge et déterminer sa limite.

Soit n ∈ N∗ (pour éviter de diviser par zéro un peu plus tard).

Pour tout k ∈ [[1, 2n+ 1]], la décroissance de 7→ 1√
t

sur R∗
+ fournit les encadrements

1

n+ 1
=

1√
n2 + 2n+ 1

⩽
1√

n2 + k
⩽

1√
n2 + 1

⩽
1√
n2

=
1

n
.

En sommant ces encadrements, on obtient

2n+ 1

n+ 1
=

2n+1∑
k=1

1

n+ 1
⩽ Sn ⩽

2n+1∑
k=1

1

n
=

2n+ 1

n
.

Comme les deux suites
(
2n+ 1

n+ 1

)
n∈N

et
(
2n+ 1

n

)
n∈N∗

convergent vers 2, le théorème des gendarmes ga-

rantit que Sn −−−−−→
n→+∞ 2.

Exercice 3

1. Soit v une suite réelle vérifiant v0 > 0 et ∀n ∈ N, vn+1 =
√
vn.

(a) Montrer que la suite v est à valeurs strictement positives.

Il s’agit d’une récurrence immédiate, basée sur la propriété de stabilité ∀t ∈ R,
+

√
t > 0, elle-même

conséquence directe de la stricte croissance de la fonction racine. Je ne donne pas les détails.

(b) Déterminer une expression de
(
ln(vn)

)
n∈N. Qu’en déduit-on sur vn quand n → +∞?

▶ Pour tout n ∈ N, on a ln(vn+1) = ln
(√

vn
)
=

1

2
ln(vn), donc la suite

(
ln(vn)

)
n∈N est

géométrique, de raison
1

2
. On en déduit ∀n ∈ N, ln(vn) =

ln(v0)
2n

.

▶ L’expression ci-dessus (ou le cours sur les suites géométriques) montre que ln(vn) −−−−−→
n→+∞ 0.

En passant à l’exponentielle (plus formellement : en utilisant la continuité de l’exponentielle en
0), on en déduit vn −−−−−→

n→+∞ 1.

Dans la suite de l’exercice, on fixe une suite réelle u vérifiant u0 > 0 et ∀n ∈ N, un+1 =
√
un +

1

n+ 1
.

2. Montrer qu’à partir d’un certain rang, la suite u est à valeurs dans [1,+∞[.

Pour tout n ∈ N∗, notons P(n) l’assertion un ∈ [1,+∞[.

Montrons ∀n ∈ N∗,P(n) par récurrence, ce qui conclura.

Initialisation. On a u0 > 0, donc u1 = u0 + 1 > 1. A fortiori, u1 ∈ [1,+∞[, ce qui montre P(1).
Hérédité. Soit n ∈ N∗ tel que P(n), c’est-à-dire tel que un ⩾ 1.

Par croissance de la fonction
√
·, on a un+1 =

√
un +

1

n+ 1
⩾

√
un ⩾ 1, ce qui montre P(n+ 1)

et clôt la récurrence.
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3. Soit n ∈ N. Montrer que si un+1 ⩽ un, alors un+2 ⩽ un+1.

Supposons un+1 ⩽ un. On a alors

un+2 − un+1 =

(
√
un+1 +

1

n+ 2

)
−

(
√
un +

1

n+ 1

)
=

√
un+1 −

√
un −

1

(n+ 1)(n+ 2)
⩽

√
un+1 −

√
un ⩽ 0,

par croissance de la fonction
√
·. Ainsi, un+2 ⩽ un+1.

4. Montrer que la suite u est monotone à partir d’un certain rang.

▶ S’il existe un rang N ∈ N tel que uN+1 ⩽ uN, la question précédente et une récurrence immédiate
montrent que ∀n ⩾ N, un+1 ⩽ un. Dans ce cas, la suite u décroît à partir d’un certain rang.

▶ Dans le cas contraire, on a, pour tout N ∈ N, uN+1 > uN, donc la suite u croît (et même strictement).

5. Montrer que la suite u converge, et déterminer sa limite.

On distingue deux cas, grâce à la question précédente.

▶ Supposons u décroissante à partir d’un certain rang.

On sait que u est minorée (on a par exemple montré qu’elle était ⩾ 1 à partir d’un certain rang). Le
théorème de la limite monotone entraîne alors qu’elle converge.

▶ Supposons u croissante à partir d’un certain rang. D’après le théorème de la limite monotone, il suffit
de montrer que u est majorée.

Supposons par l’absurde que ce ne soit pas le cas. Le théorème de la limite monotone entraîne alors
que un −−−−−→

n→+∞ +∞.

On a alors un+1 − un =
√
un +

1

n+ 1
− un =

√
un (1−

√
un) +

1

n+ 1
−−−−−→
n→+∞ −∞, par

opérations. On en déduit que un+1−un < 0 à partir d’un certain rang, ce qui contredit la croissance
(à partir d’un certain rang) de u.

Dans tous les cas, la suite u converge. Notons ℓ sa limite. Par passage à la limite dans les inégalités
larges, on a ℓ ⩾ 1.

Dans ce cas, on a d’une part un+1 −−−−−→
n→+∞ ℓ par extraction et un+1 =

√
un +

1

n+ 1
−−−−−→
n→+∞

√
ℓ.

Par unicité de la limite, on a
√
ℓ = ℓ, c’est-à-dire ℓ = 1 (car on sait déjà que ℓ ⩾ 1, donc 0 est exclu), si

bien que un −−−−−→
n→+∞ 1.

Remarque. A posteriori, on pourrait montrer que cela entraîne en fait que la suite u décroissait à partir
d’un certain rang : le cas croissant ne se produit pas du tout.
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Exercice 4
On note ∆ =

{
(x, y) ∈ R2

+

∣∣∣ 1 ⩽ x2 + y2 < 2
}

et A =
{
xy
∣∣ (x, y) ∈ ∆

}
.

1. Dessiner ∆.

∆ est le « quart nord-est » d’une « couronne » centrée en 0, comprise entre les cercles de rayon 1 (in-
clus dans ∆) et

√
2 (exclu de ∆). On place quelques points sur le dessin pour le préciser (mais tous

n’appartiennent pas à ∆).

(1, 0)

(0, 1)

(
√
2, 0)

(0,
√
2)

(1, 1)

(
√
2/2,

√
2/2)

2. Montrer que A possède une borne supérieure et une borne inférieure, et les déterminer.

▶ Les coordonnées des éléments de ∆ étant positives, on voit directement que A ⊆ R+. En particulier,
A est non vide (il contient 0, car (1, 0) ∈ ∆) et minoré (par 0).

Cela démontre que A possède une borne inférieure mais cela fait mieux, en montrant que 0 est le
minimum de A.

On a donc inf A = min A = 0.
▶ Soit p ∈ A. On peut donc trouver (x, y) ∈ ∆ tel que p = xy. On en déduit que

p = xy ⩽
x2 + y2

2
<

2

2
= 1,

si bien que A est majoré (par 1). Comme il est toujours non vide, il possède une borne supérieure.

On va montrer que 1 ∈ A, ce qui garantira 1 = sup A.

On vérifie ∗ que la suite croissante
(
1−

1

n

)
n⩾4

est à valeurs dans l’intervalle

[√
2

2
, 1

[
. On en dé-

duit que, pour tout n ⩾ 4, 1 ⩽

(
1−

1

n

)2

+

(
1−

1

n

)2

< 2, c’est-à-dire que le point
(
1−

1

n
, 1−

1

n

)
appartient à ∆, et donc que le produit

(
1−

1

n

)(
1−

1

n

)
=

(
1−

1

n

)2

appartient à A.

Comme
(
1−

1

n

)2

−−−−−→
n→+∞ 1 (par opérations), on a bien 1 ∈ A, ce qui conclut.

*. ce que l’on peut faire sans approximation : 8 ⩽ 9, donc 2
√
2 ⩽ 3 par croissance de la racine carrée, donc

√
2/2 ⩽ 3/4.
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Exercice 5
On dira dans cet exercice qu’une suite u ∈ RN est pseudo-décroissante si

∀n ∈ N, ∃N ∈ N : ∀p ⩾ N, up ⩽ un.

1. Soit u ∈ RN une suite à valeurs > 0 telle que un −−−−−→
n→+∞ 0. Montrer que u est pseudo-décroissante.

Soit n ∈ N. On sait que un > 0 mais que la suite u converge vers 0.

En particulier, elle doit être < un à partir d’un certain rang (par « antipassage à la limite ») : on peut
trouver N ∈ N tel que ∀p ⩾ N, up < un.

A fortiori, on a ∀p ⩾ N, up ⩽ un, ce qui démontre la pseudo-décroissance de u.

2. Soit u ∈ RN une suite pseudo-décroissante et minorée. Montrer que u converge.

On recopie pour ainsi dire la démonstration du théorème de la limite monotone vue en cours.

Considérons V =
{
un

∣∣n ∈ N
}

. Comme la suite u est minorée, l’ensemble V est minoré. Il contient par
ailleurs u0, si bien qu’il est non vide.

On peut alors considérer ℓ = inf V. Montrons que un −−−−−→
n→+∞ ℓ.

Soit ε > 0.

Comme ℓ = inf V ∈ V, on peut trouver v ∈ V tel que |v − ℓ| ⩽ ε. Puisque ℓ minore V, on a même
l’encadrement plus précis ℓ ⩽ v ⩽ ℓ+ ε.

On peut trouver n ∈ N tel que v = un.

Par pseudo-décroissance, on peut trouver N ∈ N tel que ∀p ⩾ N, up ⩽ un.

Soit maintenant p ⩾ N.

▶ Comme up ∈ V et que ℓ minore V, on a ℓ ⩽ up.
▶ Par définition de N, on a up ⩽ un ⩽ ℓ+ ε.

On a donc l’encadrement ℓ ⩽ up ⩽ ℓ+ε, ce qui donne a fortiori |up−ℓ| ⩽ ε et conclut la démonstration
de la convergence un −−−−−→

n→+∞ ℓ.
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Problème. Matrices bistochastiques.

Partie I. Généralités.

1. Matrices de permutation.

(a) Soit σ ∈ Σn et j ∈ [[1, n]]. Montrer Pσ ej = eσ(j).

Soit i ∈ [[1, n]]. On a (en notant [X]i,• plutôt que [X]i,1 la i-ème coordonnée d’une colonne X ∈ Cn) :

[Pσ ej]i,• =

n∑
k=1

[Pσ]i,k [ej]k,•︸ ︷︷ ︸
=1(j=k)

= [Pσ]i,j = 1(i=σ(j)).

Autrement dit, le vecteur colonne Pσ ej a sa σ(j)-ième coordonnée qui vaut 1, et les autres 0, c’est-
à-dire que Pσ ej = eσ(j).

(b) Soit σ, τ ∈ Σn. Montrer Pσ Pτ = Pσ◦τ.

Soit j ∈ [[1, n]]. On a d’après la question précédente

Pσ Pτ ej = Pσeτ(j) = eσ(τ(j)) = Pσ◦τ ej.

Autrement dit, Cj (Pσ Pτ) = Cj (Pσ◦τ).

Comme cela est vrai pour tout j ∈ [[1, n]], on a Pσ Pτ = Pσ◦τ.

(c) Soit σ ∈ Σn. Montrer que Pσ est inversible et que P−1
σ = PT

σ.

▶ D’après la question précédente, on a PσPσ−1 = Pσ−1Pσ = Pid[[1,n]]
= In, ce qui montre que Pσ

est inversible, d’inverse P−1
σ .

▶ Il reste à montrer que Pσ−1 = PT
σ. Soit i, j ∈ [[1, n]].

On a [Pσ−1 ]i,j = 1(i=σ−1(j)) et [PT
σ]i,j = [Pσ]j,i = 1(j=σ(i)).

Les conditions i = σ−1(j) et j = σ(i) étant équivalentes, ces deux coefficients sont bien égaux.

2. Une première caractérisation des matrices bistochastiques.

(a) Soit M ∈ Mn(R). Montrer que M ∈ Bn si et seulement si M ⩾ 0 et Mu = MTu = u.

Il suffit de remarquer que

M


1

1
...
1

 =



n∑
j=1

[M]1,j

n∑
j=1

[M]2,j

...
n∑
j=1

[M]n,j


:

l’égalité Mu = u équivaut donc au fait que la somme des éléments de chaque ligne de M vaut 1.

En appliquant ce fait à MT, on voit donc que l’égalité MTu = u équivaut au fait que la somme des
éléments de chaque colonne de M vaut 1.

Ainsi, on a bien M ∈ Bn ⇔ (M ⩾ 0 et Mu = MTu = u).
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(b) En déduire que Bn est stable par produit, c’est-à-dire que ∀M,N ∈ Bn,MN ∈ Bn.

Soit M,N ∈ Bn.

▶ Pour tous i, j ∈ [[1, n]], on a [MN]i,j =

n∑
k=1

[M]i,k︸ ︷︷ ︸
⩾0

[N]k,j︸ ︷︷ ︸
⩾0

⩾ 0, donc MN ⩾ 0.

▶ On a MNu = Mu = u.
▶ On a (MN)Tu = NTMTu = NTu = u.

À l’aide de la question précédente, cela montre que MN ∈ Bn.

3. Donner un exemple de matrice non inversible appartenant à Bn.

La matrice J =
1

n


1 1 · · · 1

1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 est clairement bistochastique.

Le vecteur non nul e1 − e2 appartient à ker(J), ce qui prouve que J n’est pas inversible.

4. Matrices bistochastiques inversibles. Soit M ∈ Bn ∩ GLn(R).
(a) Montrer que M−1 ∈ Bn si et seulement si M−1 ⩾ 0.

Puisque M est inversible, MT l’est aussi, et on sait que son inverse est (MT)−1 = (M−1)T.

En multipliant à gauche l’égalité Mu = u (resp. MTu = u) par l’inverse de M (resp. MT), on
obtient u = M−1u (resp. u = (M−1)Tu).

Cela montre que la matrice M−1 possède automatiquement deux des trois propriétés caractérisant
la bistochasticité.

On a donc M−1 ∈ Bn si et seulement si M−1 ⩾ 0.

(b) Supposons M−1 ∈ Bn. On va montrer qu’alors M est une matrice de permutation.

i. En utilisant l’égalité M−1M = In, montrer

∀i, j ∈ [[1, n]], [M]i,j ̸= 0 ⇒ ∃λ ∈ R : Ci(M−1) = λej.

Soit i, j ∈ [[1, n]] tel que [M]i,j ̸= 0.

On souhaite montrer que la i-ème colonne de M−1 est proportionnelle à ej, c’est-à-dire que,
pour tout k ̸= j, [M−1]k,i = 0.

Soit donc k ∈ [[1, n]] \ {j}. On a alors, en utilisant que les coefficients de M et de M−1 sont
positifs :

0 = [In]k,j =
n∑
ℓ=1

[M−1]k,ℓ [M]ℓ,j ⩾ [M−1]k,i︸ ︷︷ ︸
⩾0

[M]i,j︸ ︷︷ ︸
>0

donc [M−1]k,i = 0,

ce qui conclut.

ii. En déduire que, pour tout j ∈ [[1, n]], il existe un unique i ∈ [[1, n]] tel que [M]i,j ̸= 0, et
qu’on a alors [M]i,j = 1.

Soit j ∈ [[1, n]].

Existence. S’il n’existait pas d’indice i ∈ [[1, n]] tel que [M]i,j ̸= 0, la j-ième colonne de M
serait nulle, ce qui contredit son inversibilité.
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Unicité. S’il existait i0 ̸= i1 ∈ [[1, n]] tels que [M]i0,j et [M]i1,j soient non nuls, la question
précédente entraînerait l’existence de λ0, λ1 ∈ R tels que

Ci0(M
−1) = λ0ej et Ci1(M

−1) = λ1ej.

On en déduit λ1Ci0(M
−1) − λ0Ci1(M

−1) = 0, c’est-à-dire M−1
(
λ1ei0 − λ0ei1

)
= 0, et

on va voir que cela contredit l’inversibilité de M−1.

▶ Si λ0 = 0 ou λ1 = 0, M−1 a une colonne nulle, donc n’est pas inversible.
▶ Si λ0, λ1 ̸= 0, le vecteur λ1ei0 − λ0ei1 n’est pas nul, donc ker(M−1) n’est pas réduit

au vecteur nul, ce qui montre que M−1 n’est pas inversible.

Dans les deux cas, on a obtenu une contradiction, ce qui conclut.

On a donc montré l’existence et l’unicité de i ∈ [[1, n]] tel que [M]i,j ̸= 0.

Comme M est bistochastique et que [M]i,j est le seul coefficient non nul de Cj(M), on a néces-
sairement [M]i,j = 1.

iii. La question précédente montre que l’on peut trouver une fonction σ : [[1, n]] → [[1, n]]
telle que ∀i, j ∈ [[1, n]], [M]i,j = 1(i=σ(j)). Montrer σ ∈ Σn, c’est-à-dire que σ est bijective.

▶ Montrons d’abord que σ est injective.

Soit j0, j1 ∈ [[1, n]] tels que σ(j0) = σ(j1).

On a donc Cj0(M) = Cj1(M), d’où M(ej0 − ej1) = 0.

Comme M est inversible, cela entraîne ej0 − ej1 = 0, et donc j0 = j1.
▶ (Les théorèmes sur les ensembles finis montreront en fait que l’injectivité de σ montre

automatiquement sa surjectivité. L’argument suivant sera donc inutile).

Soit i ∈ [[1, n]]. Si i n’avait pas d’antécédent, la i-ième ligne de M serait entièrement
nulle. Il en va alors de même de la i-ème ligne de M M−1 = In, contradiction manifeste.
L’application σ est donc surjective.

5. Propriétés spectrales des matrices bistochastiques. Soit M ∈ Bn.

(a) Montrer que M − In n’est pas inversible.

On a Mu = u, donc (M − In)u = 0. Cela montre que le noyau de M − In n’est pas réduit au
vecteur nul, et donc que M − In n’est pas inversible.

(b) Montrer ∀X ∈ Cn, ∥MX∥∞ ⩽ ∥X∥∞.

Soit X ∈ Cn et k ∈ [[1, n]]. On a donc

|[MX]k,•| =

∣∣∣∣∣
n∑
ℓ=1

[M]k,ℓ[X]ℓ,•

∣∣∣∣∣
⩽

n∑
ℓ=1

[M]k,ℓ
∣∣[X]ℓ,•∣∣︸ ︷︷ ︸
⩽∥X∥∞

(in. triang. et M ⩾ 0)

⩽

(
n∑
ℓ=1

[M]k,ℓ

)
∥X∥∞

⩽ ∥X∥∞. (car M ∈ Bn)
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(c) En déduire que pour tout λ ∈ C de module > 1, la matrice M − λIn est inversible.

Soit λ ∈ C de module > 1.

Soit X ∈ ker(M − λIn). On a donc (M − λIn)X = 0, c’est-à-dire MX = λX.

▶ D’après la question précédente, on a ∥MX∥∞ ⩽ ∥X∥∞.
▶ Par ailleurs, ∥MX∥∞ = ∥λX∥∞ = |λ| ∥X∥∞.

En comparant ces deux informations, on a (|λ|− 1)︸ ︷︷ ︸
>0

∥X∥∞ ⩽ 0, ce qui montre ∥X∥∞ = 0.

Par définition de ∥·∥∞, on en déduit que tous les coefficients de X sont nuls, c’est-à-dire que X = 0.

On a ainsi montré ker(M− λIn) = {0}, ce qui montre que M− λIn est inversible, d’après le critère
nucléaire d’inversibilité.

Partie II. Un processus de diffusion.

6. Diagonalisation d’une matrice de permutation. On définit un élément σ ∈ Σn par :

σ :


[[1, n]] → [[1, n]]

i 7→ {
i− 1 si i ⩾ 2

n si i = 1.

(a) Montrer que Pn
σ = In.

Une récurrence immédiate montre que ∀k ∈ N, ∀x ∈ [[1, n]], (σ ◦ · · · ◦ σ)︸ ︷︷ ︸
k fois

(x) ≡ x− k (mod n).

En particulier, on a σ ◦ · · · ◦ σ︸ ︷︷ ︸
n fois

= id[[1,n]]

En utilisant la question 1b (et une autre récurrence), on obtient donc Pn
σ = Pσ◦···◦σ = Pid[[1,n]]

= In.

(b) Soit λ ∈ C et X ∈ Cn un vecteur non nul tels que PσX = λX. Montrer que λ ∈ Un.

On a P2
σX = Pσ(λX) = λPσX = λ2X. Par une récurrence immédiate, on a donc

X = Pn
σX = λnX donc (λn − 1)X = 0.

Comme le vecteur X est non nul, on en déduit λn = 1, c’est-à-dire λ ∈ Un.

(c) Soit λ ∈ Un. Montrer que le vecteur Xλ =


1

λ

λ2

...
λn−1

 vérifie PσXλ = λXλ.

On a

Pσ =


0 1 0 · · · 0

0 0 1 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

 donc PσXλ =


λ

λ2

λ3

...
1

 = λ


1

λ

λ2

...
λn−1

 = λXλ.
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(d) On définit F =
(
ω
(
(k− 1)(ℓ− 1)

))
1⩽k,ℓ⩽n

∈ Mn(C) et F la matrice obtenue en remplaçant

chaque coefficient de F par son conjugué. On remarquera que, pour tout ℓ ∈ [[1, n]], la
ℓ-ième colonne de F est Xω(ℓ−1).

Calculer le produit F F et en déduire que F ∈ GLn(C).

Avant de se lancer dans le calcul, rappelons que si λ ∈ Un \ {1}, la formule pour la somme des
termes d’une suite géométrique montre que

n−1∑
x=0

λx =
1− λn

1− λ
= 0

(et, évidemment, la somme vaut n si λ = 1).

Soit maintenant k, ℓ ∈ [[1, n]]. On a

[F F]k,ℓ =
n∑
j=1

[F]k,j[F]j,ℓ

=

n∑
j=1

ω
(
(k− 1)(j− 1)

)
ω
(
(j− 1)(ℓ− 1)

)
=

n∑
j=1

ω
(
(k− 1)(j− 1) − (j− 1)(ℓ− 1)

)
=

n∑
j=1

ω
(
(k− ℓ)(j− 1)

)
=

n∑
j=1

ω
(
k− ℓ

)j−1

=

n−1∑
x=0

ω
(
k− ℓ

)x
,

[
x = j− 1

j = x+ 1

]
qui vaut donc n si k = ℓ et 0 sinon.

Autrement dit, on a F F = n In, ce qui montre que F est inversible, et que F−1 =
1

n
F.

(e) Montrer que F−1PσF = diag
(
ω(0),ω(1), . . . ,ω(n− 1)

)
.

Soit j ∈ [[1, n]]. On a Fej = Xω(j−1), ce qui donne également ej = F−1Xω(j−1). On a alors(
F−1PσF

)
ej = F−1PσXω(j−1)

= ω(j− 1)F−1Xω(j−1) (d’après la question 6c)

= ω(j− 1) ej,

ce qui montre que la j-ième colonne de F−1PσF est ω(j− 1) ej.

Cela étant valable pour tout j ∈ [[1, n]], on a F−1PσF = diag
(
ω(0),ω(1), . . . ,ω(n− 1)

)
.
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7. Exprimer la relation de récurrence (�) sous la forme ∀t ∈ N,Xt+1 = AXt, où A ∈ Mn(R) est une
matrice que l’on exprimera à l’aide de la matrice Pσ.

Soit t ∈ N. On a

Xt+1 =



xn(t) + x2(t)

2
x1(t) + x3(t)

2
x2(t) + x4(t)

2
...

xn−1(t) + x1(t)

2


=

1

2


0 1 0 · · · 1

1 0 1 · · · 0

0 1 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0




x1(t)
x2(t)
x3(t)

...
xn(t)

 =
Pσ + PT

σ

2
Xt =

Pσ + P−1
σ

2
Xt.

En posant A =
Pσ + P−1

σ

2
, on a donc ∀t ∈ N,Xt+1 = AXt.

8. En déduire que l’on a ∀t ∈ N,Xt = F diag(λt1, λ
t
2, . . . , λ

t
n)F−1 X0, où λ1, λ2, . . . , λn sont des

nombres réels que l’on précisera.

La relation ∀t ∈ N,Xt+1 = A Xt et une récurrence immédiate montrent ∀t ∈ N,Xt = At X0.

Il reste simplement à montrer que ∀t ∈ N,At = F diag(λt1, λ
t
2, . . . , λ

t
n)F−1, pour des réels λ1, λ2, . . . , λn

encore à déterminer.

D’après la question 6e, on a F−1PσF = diag
(
ω(0),ω(1), . . . ,ω(n− 1)

)︸ ︷︷ ︸
∆

, c’est-à-dire Pσ = F∆F−1.

En passant à l’inverse, P−1
σ =

(
F∆F−1

)−1
= F∆−1F−1, donc

A =
Pσ + P−1

σ

2
=

F∆F−1 + F∆−1F−1

2

= F
∆+ ∆−1

2
F−1

= F diag
(
ω(0) +ω(0)−1

2
,
ω(1) +ω(1)−1

2
, . . . ,

ω(n− 1) +ω(n− 1)−1

2

)
F−1

= F diag
(
1, cos

(
2π

n

)
, . . . , cos

(
2π

n
(n− 1)

))
F−1

= F diag(λ1, λ2, . . . , λn)F−1,

où, pour tout j ∈ [[1, n]], on a posé λj = cos
(
2π

n
(j− 1)

)
.

Ainsi, pour tout t ∈ N, on a

At =
(

F diag(λ1, λ2, . . . , λn)F−1
)t

= F diag(λ1, λ2, . . . , λn)t F−1

= F diag
(
λt1, λ

t
2, . . . , λ

t
n

)
F−1,

ce qui conclut.
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9. On suppose n pair. Montrer que la suite (Xt)t∈N ne converge pas.

Le phénomène problématique (de périodicité) se voit sur des petits cas, comme par exemple ici quand
n = 6.

1

23

4

5 6

1

00

0

0 0

t = 0

1

23

4

5 6

0

1/20

0

0 1/2

t = 1

1

23

4

5 6

1/2

01/4

0

1/4 0

t = 2

1

23

4

5 6

0

3/80

1/4

0 3/8

t = 3

Soit t ∈ N. On a alors∑
k∈[[1,n]]
k pair

xk(t+ 1) = x2(t+ 1) + x4(t+ 1) + x6(t+ 1) + · · ·+ xn(t+ 1)

=
x1(t) + x3(t)

2
+

x3(t) + x5(t)

2
+

x5(t) + x7(t)

2
+ · · ·+ xn−1(t) + x1(t)

2

= x1(t) + x3(t) + x5(t) + · · ·+ xn−1(t)

=
∑

k∈[[1,n]]
k impair

xk(t)

et, de même,
∑

k∈[[1,n]]
k impair

xk(t+ 1) =
∑

k∈[[1,n]]
k pair

xk(t).

Vu la valeur de X0, une récurrence immédiate montre que

∀t ∈ N,
∑

k∈[[1,n]]
k pair

xk(t) =

{
0 si t pair
1 si t impair.

Cela montre que la suite

( ∑
k∈[[1,n]]
k pair

xk(t)

)
t∈N

ne converge pas, d’où l’on tire que (Xt)t∈N ne converge pas.

10. On suppose n impair.

(a) Montrer que Xt −−−−→
t→+∞ 1

n
u.

Comme n est impair, on a λ = 1 et ∀j ∈ [[2, n]],
2π

n
(j−1) ̸≡ 0 (mod π), donc λ2, . . . , λn ∈ ]−1, 1[.

En particulier, ∀j ∈ [[2, n]], λtj −−−−→
t→+∞ 0.

On en déduit diag
(
λt1, λ

t
2, . . . , λ

t
n

)
−−−−→
t→+∞ diag(1, 0, . . . , 0).

Pour terminer le calcul, on remarque FX0 = u, et que les calculs de la question 6d entraînent que

F−1 =
1

n
F, donc F−1X0 =

1

n
FX0 =

1

n
u.
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On a alors

Xt = F diag(λt1, λ
t
2, . . . , λ

t
n)F−1 X0 −−−−→

t→+∞ F diag(1, 0, . . . , 0)F−1X0

=
1

n
F diag(1, 0, . . . , 0)u =

1

n
F X0 =

1

n
u.

(b) Montrer que ∀t ∈ N,
∥∥∥∥Xt −

1

n
u

∥∥∥∥∞ ⩽ cos
(π
n

)t
.

Pour tout j ∈ [[2, n]], on a j− 1 ∈ [[1, n− 1]].

▶ Si j− 1 ∈ [[1, (n− 1)/2]], on a
2π

n
(j− 1) ∈

[
2π

n
,
π

n
(n− 1)

]
=

[
2π

n
, π−

π

n

]
, donc

λj = cos
(
2π

n
(j− 1)

)
∈
[

cos
(
π−

π

n

)
, cos

(
2π

n

)]
=

[
− cos

(π
n

)
, cos

(
2π

n

)]
,

ce qui entraîne |λj| ⩽ cos
(π
n

)
.

▶ Par parité de cosinus, la même inégalité est valable si j− 1 ∈ [[(n+ 1)/2, n− 1]].

Remarquons que si M ∈ Mn(C) et Y =

y1
...
yn

 ∈ Cn, on a, pour tout k ∈ [[1, n]],

|[MY]k,1| =

∣∣∣∣∣
n∑
ℓ=1

[M]k,ℓ yk

∣∣∣∣∣
⩽

(
n∑
ℓ=1

|[M]k,ℓ|

)
∥Y∥∞,

donc ∥MY∥∞ ⩽
∣∣∣∣∣∣M∣∣∣∣∣∣ ∥Y∥∞,

où l’on a défini, pour tout M ∈ Mn(C),
∣∣∣∣∣∣M∣∣∣∣∣∣ = n

max
k=1

n∑
ℓ=1

|[M]k,ℓ|.

Comme en outre
∥∥∥F−1X0

∥∥∥∞ =

∥∥∥∥ 1nu

∥∥∥∥∞ =
1

n
, on a bien, pour tout t ∈ N,

∥∥∥∥Xt −
1

n
u

∥∥∥∥∞ =
∥∥∥F diag(1, λt2, . . . , λ

t
n)F−1 X0 − F diag(1, 0, . . . , 0)F−1X0

∥∥∥∞
=
∥∥∥F diag(0, λt2, . . . , λ

t
n)F−1 X0

∥∥∥∞
⩽
∣∣∣∣∣∣F∣∣∣∣∣∣ ∣∣∣∣∣∣diag(0, λt2, . . . , λ

t
n)
∣∣∣∣∣∣ ∥∥∥F−1X0

∥∥∥∞
⩽ n

n
max
j=2

(∣∣λtj ∣∣) 1

n

⩽

(
n

max
j=2

(|λj|)

)t

⩽ cos
(π
n

)t
.
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