
Lycée Henri-IV (PCSI) 23 janvier 2026

Cinquième composition de mathématiques

Durée : 4 heures.

Toute sortie est interdite pendant les dix dernières minutes.

Les documents, calculatrices, etc. sont interdits.

Consignes générales de présentation

La présentation de la copie est prise en compte dans l’évaluation.

▶ Ne composez pas sur la première page, ce qui me permettra d’écrire mes commentaires.

▶ Merci d’encadrer ou de souligner vos résultats.
▶ Numérotez vos copies doubles, et rendez-les dans l’ordre, la première servant de chemise pour les suivantes,

qui ne seront pas imbriquées les unes dans les autres.
▶ Les parties trop difficiles à lire de votre copie ne seront pas lues.
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Exercice 1
On fixe dans cet exercice ρ ∈ R. On considère alors une suite (un)n∈N définie par

u0 = 0, u1 = 1 et ∀n ∈ N, un+2 = (1+ ρ)un+1 − ρun.

1. Déterminer, en fonction de ρ, une expression simple de la suite u.
2. Pour quelles valeurs de ρ a-t-on ∀n ∈ N, un ⩾ 0?

Exercice 2

Pour tout n ∈ N, on note Sn =

2n+1∑
k=1

1√
n2 + k

. Montrer que (Sn)n∈N converge et déterminer sa limite.

Exercice 3

1. Soit v une suite réelle vérifiant v0 > 0 et ∀n ∈ N, vn+1 =
√
vn.

(a) Montrer que la suite v est à valeurs strictement positives.
(b) Déterminer une expression de

(
ln(vn)

)
n∈N. Qu’en déduit-on sur vn quand n → +∞?

Dans la suite de l’exercice, on fixe une suite réelle u vérifiant u0 > 0 et ∀n ∈ N, un+1 =
√
un +

1

n+ 1
.

2. Montrer qu’à partir d’un certain rang, la suite u est à valeurs dans [1,+∞[.
3. Soit n ∈ N. Montrer que si un+1 ⩽ un, alors un+2 ⩽ un+1.
4. Montrer que la suite u est monotone à partir d’un certain rang.
5. Montrer que la suite u converge, et déterminer sa limite.

Exercice 4
On note ∆ =

{
(x, y) ∈ R2

+

∣∣∣ 1 ⩽ x2 + y2 < 2
}

et A =
{
xy

∣∣ (x, y) ∈ ∆
}

.

1. Dessiner ∆.
2. Montrer que A possède une borne supérieure et une borne inférieure, et les déterminer.

Exercice 5
On dira dans cet exercice qu’une suite u ∈ RN est pseudo-décroissante si

∀n ∈ N, ∃N ∈ N : ∀p ⩾ N, up ⩽ un.

1. Soit u ∈ RN une suite à valeurs > 0 telle que un −−−−−→
n→+∞ 0. Montrer que u est pseudo-décroissante.

2. Soit u ∈ RN une suite pseudo-décroissante et minorée. Montrer que u converge.
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Problème. Matrices bistochastiques.
Dans tout le problème, n ⩾ 3 désigne un entier.

▶ On rappelle qu’étant donné M ∈ Mn,p(C) et j ∈ [[1, p]], la notation Cj(M) désigne la j-ième
colonne de M, vue comme vecteur de Cn.

▶ Étant donné M ∈ Mn(R), on notera M ⩾ 0 si ∀i, j ∈ [[1, n]], [M]i,j ⩾ 0.

▶ Une matrice M ∈ Mn(R) est dite bistochastique si tous ses éléments sont ⩾ 0, et si la somme des
éléments de chacune de ses lignes et de chacune de ses colonnes vaut 1. On note alors

Bn =

{
M ∈ Mn(R)

∣∣∣∣∣M ⩾ 0 et ∀k ∈ [[1, n]],

n∑
ℓ=1

[M]k,ℓ =

n∑
ℓ=1

[M]ℓ,k = 1

}

l’ensemble de ces matrices.

▶ On note Σn l’ensemble des bijections σ : [[1, n]] → [[1, n]].
Pour tout σ ∈ Σn, on note Pσ et on appelle matrice de permutation associée à σ la matrice carrée
d’ordre n dont le coefficient (i, j) vaut 1 si i = σ(j), et 0 sinon. Ainsi, Pσ =

(
1(i=σ(j))

)
1⩽i,j⩽n

.

Il s’agit donc des matrices possédant exactement un coefficient non nul sur chaque ligne, et sur
chaque colonne, valant 1. Par exemple, il y a six matrices de permutation dans M3(C), à savoir :1 0 0

0 1 0

0 0 1

 ,

1 0 0

0 0 1

0 1 0

 ,

0 1 0

1 0 0

0 0 1

 ,

0 0 1

1 0 0

0 1 0

 ,

0 1 0

0 0 1

1 0 0

 et

0 0 1

0 1 0

1 0 0

 .

▶ On note e1 =


1

0
...
0

 , e2 =


0

1
...
0

 , . . . , en =


0

0
...
1

 les vecteurs de la base canonique.

▶ On note également u = e1 + · · ·+ en le vecteur dont tous les coefficients valent 1.

▶ Étant donné un vecteur X =

x1
...
xn

 ∈ Cn, on note enfin ∥X∥∞ = max
(
|x1| , . . . , |xn|

)
.

Partie I. Généralités.

1. Matrices de permutation.

(a) Soit σ ∈ Σn et j ∈ [[1, n]]. Montrer Pσ ej = eσ(j).
(b) Soit σ, τ ∈ Σn. Montrer Pσ Pτ = Pσ◦τ.
(c) Soit σ ∈ Σn. Montrer que Pσ est inversible et que P−1

σ = PT
σ.

2. Une première caractérisation des matrices bistochastiques.

(a) Soit M ∈ Mn(R). Montrer que M ∈ Bn si et seulement si M ⩾ 0 et Mu = MTu = u.
(b) En déduire que Bn est stable par produit, c’est-à-dire que ∀M,N ∈ Bn,MN ∈ Bn.

3. Donner un exemple de matrice non inversible appartenant à Bn.
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4. Matrices bistochastiques inversibles. Soit M ∈ Bn ∩ GLn(R).
(a) Montrer que M−1 ∈ Bn si et seulement si M−1 ⩾ 0.
(b) Supposons M−1 ∈ Bn. On va montrer qu’alors M est une matrice de permutation.

i. En utilisant l’égalité M−1M = In, montrer

∀i, j ∈ [[1, n]], [M]i,j ̸= 0 ⇒ ∃λ ∈ R : Ci(M−1) = λej.

ii. En déduire que, pour tout j ∈ [[1, n]], il existe un unique i ∈ [[1, n]] tel que [M]i,j ̸= 0, et
qu’on a alors [M]i,j = 1.

iii. La question précédente montre que l’on peut trouver une fonction σ : [[1, n]] → [[1, n]]
telle que ∀i, j ∈ [[1, n]], [M]i,j = 1(i=σ(j)). Montrer σ ∈ Σn, c’est-à-dire que σ est bijective.

5. Propriétés spectrales des matrices bistochastiques. Soit M ∈ Bn.

(a) Montrer que M − In n’est pas inversible.
(b) Montrer ∀X ∈ Cn, ∥MX∥∞ ⩽ ∥X∥∞.
(c) En déduire que pour tout λ ∈ C de module > 1, la matrice M − λIn est inversible.

Partie II. Un processus de diffusion.

On modélise (grossièrement) la diffusion de la chaleur dans un matériau homogène de forme cir-
culaire. Pour simplifier, on discrétise à la fois le matériau et le temps, si bien que l’état du système
au temps t = 0, 1, 2, 3, . . . est simplement donné par n températures différentes x1(t), . . . , xn(t).
À chaque étape, la température en un point est remplacée par la moyenne des températures de ses
deux voisins à l’étape précédente. Voici par exemple le début du processus dans le cas n = 5.

1

2

3

4

5

1

0

0

0

0

t = 0

X0 =


1

0

0

0

0



1

2

3

4

5

0

1/2

0

0

1/2

t = 1

X1 =


0

1/2

0

0

1/2



1

2

3

4

5

1/2

0

1/4

1/4

0

t = 2

X2 =


1/2

0

1/4

1/4

0



1

2

3

4

5

0

3/8

1/8

1/8

3/8

t = 3

X3 =


0

3/8

1/8

1/8

3/8



Plus formellement, on définit une suite de vecteurs (Xt)t∈N =



x1(t)
x2(t)

...
xn(t)




t∈N

de Rn en posant

∀i ∈ [[1, n]], xi(0) =

{
1 si i = 1

0 si i ⩾ 2

et ∀t ∈ N, ∀i ∈ [[1, n]], xi(t+ 1) =



xi−1(t) + xi+1(t)

2
si 2 ⩽ i ⩽ n− 1

xn(t) + x2(t)

2
si i = 1

xn−1(t) + x1(t)

2
si i = n.

(�)
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6. Diagonalisation d’une matrice de permutation. On définit un élément σ ∈ Σn par :

σ :


[[1, n]] → [[1, n]]

i 7→ {
i− 1 si i ⩾ 2

n si i = 1.

(a) Montrer que Pn
σ = In.

(b) Soit λ ∈ C et X ∈ Cn un vecteur non nul tels que PσX = λX. Montrer que λ ∈ Un.

(c) Soit λ ∈ Un. Montrer que le vecteur Xλ =


1

λ

λ2

...
λn−1

 vérifie PσXλ = λXλ.

Pour tout k ∈ Z, on note ω(k) = exp
(
i
2π

n
k

)
.

(d) On définit F =
(
ω
(
(k− 1)(ℓ− 1)

))
1⩽k,ℓ⩽n

∈ Mn(C) et F la matrice obtenue en remplaçant

chaque coefficient de F par son conjugué. On remarquera que, pour tout ℓ ∈ [[1, n]], la
ℓ-ième colonne de F est Xω(ℓ−1).

Calculer le produit F F et en déduire que F ∈ GLn(C).
(e) Montrer que F−1PσF = diag

(
ω(0),ω(1), . . . ,ω(n− 1)

)
.

7. Exprimer la relation de récurrence (�) sous la forme ∀t ∈ N,Xt+1 = AXt, où A ∈ Mn(R) est une
matrice que l’on exprimera à l’aide de la matrice Pσ.

8. En déduire que l’on a ∀t ∈ N,Xt = F diag(λt1, λ
t
2, . . . , λ

t
n)F−1 X0, où λ1, λ2, . . . , λn sont des

nombres réels que l’on précisera.

La suite de cette partie parle de convergence de suites de matrices (colonnes ou carrées).

Une suite de matrices (Mt)t∈N converge vers M si et seulement si, pour tous indices i et j, le coefficient (i, j)
de Mt converge vers celui de M quand t tend vers +∞.

On n’hésitera pas à utiliser les résultats habituels sur la convergence dans ce contexte. Notamment, si (Mt)t∈N
et (Nt)t∈N sont deux suites de matrices convergeant vers M et N respectivement, alors Mt Nt −−−−→

t→+∞ M N.

9. On suppose n pair. Montrer que la suite (Xt)t∈N ne converge pas.
10. On suppose n impair.

(a) Montrer que Xt −−−−→
t→+∞ 1

n
u.

(b) Montrer que ∀t ∈ N,
∥∥∥∥Xt −

1

n
u

∥∥∥∥∞ ⩽ cos
(π
n

)t
.
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