Khôlle 25 21 mai 2024

Représentations matricielles

Thèmes

- ▶ Tout le cours sur la dimension, y compris le théorème du rang.
- ▶ Matrices d'un vecteur, d'une famille de vecteurs, d'une application linéaire.
- ▶ Applications linéaires (endomorphismes) associées à des matrices (carrées). Les applications $y \mapsto_{\mathcal{C}}[y]$ et $f \mapsto_{\mathcal{C}}[f]_{\mathcal{B}}$ définissent des isomorphismes $F \to K^n$ et $\mathcal{L}(E,F) \to M_{n,p}(K)$. Conséquence : dim $\mathcal{L}(E,F) = \dim E \times \dim F$.
- « Évaluer, c'est multiplier ». « Composer, c'est multiplier. » Équivalence f isomorphisme $\Leftrightarrow_{\mathbb{C}}[f]_{\mathbb{B}}$ inversible et cas particulier des automorphismes.
- ▶ Changements de bases : matrices de passage $P_{\mathcal{B} \to \mathcal{B}'} = {}_{\mathcal{B}}[\mathcal{B}'] = {}_{\mathcal{B}'}[\mathrm{id}_E]_{\mathcal{B}}$ et formules de changement de bases.
- ▶ Rang d'une matrice. Importation des résultats déjà démontrés pour les applications linéaires.
- ► Calcul du rang d'une matrice. Rang d'une transposée.
- ▶ Les hyperplans sont les noyaux de formes linéaires.

Questions de cours

- ▶ Lemme de précipitation.
- ▶ Formule de Grassmann.
- ► Théorème du rang.
- ► Formule de changement de bases pour une application linéaire. (Que la question soit ou non choisie en question de cours, j'incite les khôlleurs et khôlleuses à profiter du moindre prétexte pour vérifier que la formule est connue, sans erreur ni hésitation!).
- ▶ Lemme (formellement hors-programme) : quelle que soit $A \in M_{n,p}(K)$ de rang r, il existe $P \in GL_n(K)$ et $Q \in GL_p(K)$ telles que $P^{-1}AQ$ soit « la » matrice J_r .

Lycée Henri-IV – PCSI 2023-2024