Lycée Henri-IV (PCSI) TD 13 (indications)

Suites

Exercice 7
Pour la deuxieme question, on pourra commencer par trouver une suite particuliere vérifiant la rela-
tion.

Exercice 8
On pourra considérer une suite récurrente définie par up € Ry et Vn € Nyuy 1 = f(uy).

Exercice 9
Pour la deuxiéme question, une fois que ’on aura identifié une suite (vn )nen trés proche de (| ™ | )nen
vérifiant une certaine relation de récurrence d’ordre 2 a coefficients entiers, on pourra chercher a
comprendre pourquoi il est beaucoup plus facile de calculer ce que Python appellerait v,,%1000 que
vn lui-méme, pour de trés grandes valeurs de n.

Exercice 19.
L’exercice a l'air plus difficile qu’il ne 1’est : une application du théoréme des gendarmes conclut vite.

Exercice 21
Moralement, cet exercice devrait étre facile : quand u, est petit, u;; est encore plus petit, et de loin.
Mais il faut réussir a concrétiser cette remarque.

Exercice 24
Pour la deuxieéme question, on procedera par 1’absurde et on essayera de trouver un entier n € N* tel
que l'on puisse facilement écrire e, u, et v, comme trois fractions avec le méme dénominateur.

Exercice 26
Etudier les suites (Son)nen €t (Sont1)nen-

Exercice 29
Pour la deuxiéme question, on pourra utiliser le DL1(0) de h — In(1 + h).

Exercice 30
S’inspirer de la preuve du théoréeme de Cesaro.

Exercice 34
On pourra introduire la suite (v )nen = (max(un, Un 1)) ey

Exercice 38.
Dans la premiere question, on pourra penser a faire la division euclidienne de m par n.

Exercice 42

On pourra commencer par montrer que si (|qnl|),,cy ne tend pas vers +oo, alors il existe une extrac-
trice 0 telle que (qe(n))neN soit une suite constante (pour cela, on pourra commencer par construire —
par récurrence — une sous-suite bornée).




Exercice 46.
Exprimer z,, sous forme algébrique.

Exercice 48.
Pour la premiere question, on pourra utiliser les formules d’addition pour exprimer le terme général
de la suite (un)nen a 1’aide de deux termes successifs de la suite (v )nen, et réciproquement.

Exercice 49
On pourra développer le produit pour les petites valeurs de n, afin de démontrer par récurrence que
le terme général de la suite admet une autre forme, plus facilement exploitable.

Exercice 52
On pourra penser a 1’encadrement grossier, et au logarithme.

Exercice 65
On reviendra a une traduction, avec des ¢, de I'hypothese asymptotique.

Exercice 75
Dans la deuxiéme question, on pourra calculer la fonction fn 1 — fy.

Dans la troisieme, on pourra commencer par montrer l’existence de { € R, telle que u, el L.
n—-+0o0
Autocorrection

Autocorrection A
Voila les solutions.

Pour les cing premieres questions, on est dans le cadre des théorémes du cours sur les suites véri-
fiant des relations de récurrence simple. Pour les quatre derniéres, le plus facile est de calculer les
premieres valeurs, en déduire une conjecture, puis démontrer cette derniere par récurrence (mais ce
n’est pas la seule possibilité).

7
(i) Vk € N uy = —E(—Z)k (suite géométrique);

6
(i) Vn € N u, = o (suite géométrique);

(iii) Vp € Nyu, = 10 + 3p (suite arithmétique);
P p P q

5
(iv) Yn € N,6 — g (suite arithmético-géométrique);

1
(v) Vi € Nyuy = —— — = (suite arithmético-géométrique);
3.4 3 & d
2 in=20
(vi) Vn € N,up = { stm
—2 sin>0;
1
(vii) Vn € Nyup = %;
. 1
(viii) Vn € N*,u,, = g

3

(ix) Vn e Nyu, =22""1.



Autocorrection B.

(i) Le polynome caractéristique est X* — 2X — 3 dont les racines sont (apres calcul) —1 et 3. On en
déduit qu’on peut trouver deux nombres réels R et S tels que Vn € Nyu, =R3"+S(-1)".

. . . . . R +5=1 o .
En identifiant les premiers termes, on obtient le systeme { 3R f 2 Y dont 'unique racine est

(apres calcul) (R,S) = (1/2,1/2). On en déduit que

n _] n
Vne N)un — w.

(ii) Le polynome caractéristique est X% — 4X 4 4, dont la racine (double) est 2. On en déduit qu’on
peut trouver deux nombres réels A et B tels que Vn € Nu, = (A + Bn)2"™.

. o . . N A P .
En identifiant les premiers termes, on obtient le systéme { A+ 2B—6 dont I'unique racine est
(apres calcul) (R,S) = (1,2). On en déduit que
vneNyu, =2n+1)2"

(iii) Il s’agit de la suite nulle (par une récurrence double immédiate, ou par la formulation matri-
cielle).

(iv) Le polyndome caractéristique X* — 2X + 2 a pour racines 1 + i, que 'on peut mettre sous forme
exponentielle : 1 +1 = v2e"™* et 1 —i = v2e "4, On sait alors qu’on peut trouver deux
nombres réels U et V tels que

Tt

vneNju, = V2 <Ucos (n%) + Vsin (nz)> .

En identifiant les premiers termes, on obtient le systeme {U V=1 dont 'unique racine est

(U,V) = (2,—1). On en déduit que
e

vn e Nu, = \on <2cos <n§> —sin (nZ» .

Pour les trois derniéres questions, on ne donne que les solutions brutes.

(v) ¥k € Ny = 2— k.
1.4
ERRRE ST
1

(vii) Vm € Nyu, = (24—2\%) (1 +2\/ﬁ>n+ <;—2\%> (1 _2\/§>“.

Autocorrection C

(vi) Vn e Nyuy, = —

1
(i) La suite (cosn)ncn est bornée et — 0, donc
n+1 no+

cosn
—
n+1 n—otoo

(ii) Soitn € N*.On a

n+(=0)" _ nl+(=1)"n
n?2+1 n?2 14+1/n?



(iii)

(iv)

(v)

114 (=1)n
n 1+1/n?

Ona(—-1)"/n T 0 (produit d"une suite bornée et d'une suite tendant vers 0). On en déduit
n o
14+ (=1)"/n
1+1/n2  no+too

que 1 + (—=1)"/n —— 1. Comme 1 + 1/n*> —— 1, on en déduit
n—-+oo n—-+oo

) 1
puis, comme — ——— 0, on a
n n—+oo

n+ (="
nZ41 n—-+oo

Soitn >1.0na
(=" +n _ n—1
Z )
(—=1)n+2 3

cette derniere quantité étant le terme général d"une suite tendant vers 400, on a, par minoration,

(=)™ +n
(=1 +2 no+too

+o00.

Soitn € N*.Ona

en+n2 e"1 —|—T12/€n

4+l 11/t

Par croissance comparée, on a n? /e" ——— 0. Comme par ailleurs 1 + 1 /n4 ——> 1T,ona
n—-+oo n—-+oo

1+n?/en
1+1/1% notoo

n

Toujours par croissance comparée, on a — ——— o, donc
n* n—+oo

e" +n?
n+1 notoo

+00.

Inn+1 Innl+1/Inn

+4 n 1+4/n
14+1/Inn

14+4/n notoo

Soitn > 3.0n a . Comme le numérateur et le dénominateur de la

deuxieme fraction tendent vers 1, on a
. . . Inn
Par ailleurs, par croissance comparée, — ——— 0, donc
n

n—-+oo

Inn+1
n+4 n—too

Soitn € N.On a

4 (<20 314 (23"
3n_(—2)n  3n1— (—2/3)"

14 (=2/3)n
1= (=23
2 n
Onal+ () —— 1, donc
3 n—-+oo
34 (=2 ]
3n — (*2)“ n—o+oo



(vii) Soitn € N*.On a
VT —vn—1 :\/ﬁ{\/ﬂr]/n—\/l —1/n]
:ﬁ<\/1+1/n—\/1 —1/m) (VI+1/m+ yT=1/n)
(VI+T/m+ yT=1/m)
(1+1/n)—(1—1/n)

n(\/1+1/n+\/1—1/n>

B 2/n
_\/R\/1+1/n+\/1—1/n
1 2

VSV S A = e
Le numérateur et le dénominateur de la deuxiéme fraction tendent tous deux vers 2, donc ladite

. 1 .
fraction tend vers 1. Comme — ———— 0, on en déduit
\/TT, n—-+oo

Vn+1l—vn—1 mo.
(viii) Soitn € N*.On a
VnZin—vnZ—n= \/1?[\/1 F1/m— /1 —1/n}
2/n (calcul précédent)

IRV RS Y S
2

T+ 1/m

Le numérateur et le dénominateur de la fraction tendent tous deux vers 2, donc

Vri2Z4n—yvn2—n——1.

n—-+oo

v _vn_ 1
no V'

-—JFH 0, on en déduit, par minoration, que
n—-+0oo

(ix) Soitn € N*.On a

Comme \/1?1

(x) Soitn > 2.0na

1 2 3 n—1 n
=—X — X — X---X X —
n n n n n
~— =~ ~— ~—
<1 <1 <1 =1
1
< —.
n

Par majoration, on a donc



Autocorrection D.

1. On va montrer que la somme d’une suite convergente et d'une suite divergente est divergente.
Ajouté aux résultat du cours selon lequel la somme de deux suites convergentes est conver-
gente, cela permet de remplir la « table d’addition » suivante.

+ convergente | divergente
convergente | convergente | divergente
divergente | divergente ?

Soit (cn)neN et (dn)neN deux suites convergente et divergente, respectivement. Montrons que
(cn + dn)nen diverge.

Supposons au contraire, par I'absurde, que (cn + dn)nen converge.

L'écriture (dn)nen = (cn + dn)nen — (Cn)nen exprime alors (dn )neny comme différence de deux
suites convergentes, ce qui montre qu’elle converge, et constitue une contradiction.

En revanche, le «? » ne peut pas étre rendu plus précis : il peut arriver que la somme de deux
suites divergentes diverge (comme par exemple (2n)necny = (M)nen + (N)nen) mais aussi qu’elle
converge (comme par exemple (0)nen = (N)neny + (—M)nen)-

2. Pour le produit, le cours affirme que le produit de deux suites convergentes converge, ce qui
donne la « table de multiplication » suivante.

X convergente | divergente
convergente | convergente ?
divergente ? ?

On ne peut rien dire de plus : le produit d’une suite convergente et d'une suite divergente

1

o 1 .
peut aussi bien converger (par exemple <n> = <2> X (N),en+) que diverger (par
neN* neN*

n

exemple (n), oy = <]> X (nz> ) et, de la méme facon, le produit de deux suites
n neN* neN*

divergentes peut converger (par exemple (1)neny = ((—1)"), ey X ((=1)"), cny) ou diverger (par

exemple (N%)ney = (M)nen X (N)nen)-

Autocorrection E.
Il est possible de faire des démonstrations proches de celles des théoremes « d’opérations » du cours,
et c’est d’ailleurs un bon entrainement, mais on peut directement utiliser ces théorémes.

En effet, si u, —— {1 et v, —— {5, alors
n—+o0o n—+oo

. _un+vn_‘un_vn| €]+€2—|E]—EZ|_ .
min(un,vn) = 7 N 7 =min({,£)
_un+vn+‘un_vn| €]+€2+|E]—EZ|_
et max(un,vn) = 2 — 2 = max({, £2),

par opérations.

Autocorrection F.
Soit (un)nen une suite périodique non constante. Soit T € N* tel que Vn € N, un i1 = up.

Comme la suite (un )nen est non constante, on peut trouver deux indices ng et n tels que wn, # un,.
Par une récurrence immédiate, on montre alors que

Vk € N, (Ung4kT = Uny €t Up, (kT = Un, ) -

6



On définit alors les deux applications

JN— N ot JN— N
Po: k — nyg+ kT ¢ k — n; + kT,

qui sont clairement des extractrices. D"apres ce qui précede, les sous-suites (u(p o(n) ) neN et (um (“))neN
sont toutes les deux constantes, mais prennent des valeurs différentes.

La suite (un)neny admet alors deux sous-suites qui ne convergent pas vers la méme limite. Comme
dans le cas de ((—1)"),, oy traité en cours, cela implique qu’elle diverge.

Autocorrection G.

(i) wpy ~ ——
n—+oo n
(iv) un= o (n);
n—+oo
V) upn= O (n);
n—-+oo
(Vl) Un ~ Vn,

Autocorrection H
De la plus forte a la plus faible :

1
» up, =14+ o ()Z(V),‘
n—t+oco \ N

s w1+ O <]>:(viii),-
n

n—-+oo
Uy — 1: (D), (i), (iv), (vii);
n—+oo

» U= O (1):(ix), (x);

n—+oo

» U= o (n):(vi);
n—+oo

> Uy = TL_)Qroo(n) : (iii).

Autocorrection I
L’'inégalité de 1’énoncé donne (grace a I'hypothese de positivité!)

V. w
neN 1< ——& <5,
uw

n un

Wn PN Vn
Comme — ——— 1, le théoreme des gendarmes donne — —— 1, doncu, ~ vn.
U, n—o+oo Un n—+oo n—+o0o



Autocorrection J.
IIn’y a pas d’implication logique :

» les suites (n + n?)nen et (n?)nen vérifient n + n?

. 1 1 1
» les suites | — et | — vérifient —
n neN* n neN* n

~ nzmaispasn+n2:n2+ o (1);
n—-+oo n—-+oo
1 1 1

+ o (1) maispas —

T2 oo N n—oo N2’

Remarque. Ces suites ne sont pas définies sur N mais il est facile de contourner cette difficulté,
soit en les prolongeant de fagon arbitraire a N, soit en les décalant, c’est-a-dire en considérant

1
<> , etc. On ignore ici cette subtilité.
neN

n+1

Autocorrection K

i 3nt —2n? +1 3.
2T13—|—] notoo 2
Inn+n+1 1

() 3T 2n 17 nlee 30
1 1
(iii) ln<1+ 2—|—1>n—:\-;-oonzl

1 1
(iv) In (“) ~
n n—+oo N

s 7T

V) sinsin —
( ) n? n—)+oo nz

. n?n(1+1) n?
V1 _— ~ _
tang n—+oo 71~
1

(vii) In(n+2) —In(n+1) e T

. Inn?+1) Inn
(ix) —— ~ 2——;
n+1 n—4+oco N

vnZ4+n+1
VT T e VY
n_n+]n4)+00

nd—vnZ+1 n

5(Inn)3 — 2n? notoo 2’
n!+e" n!

2n 4 3n nﬂf\;oo 37“;

1 1 2
(xiii) i e Tlee T2

. 1
(xiv) Vn+1l—vn—1 e ﬁ’

(xi)

(xii)

2
(viii) (2Zn+Inn“)e N 2ne! ; (xv) vV/Inm+1) —In(n—1) eV
Autocorrection L
Quel que soitn € N,ona — > 0, donc un41 > uy. Il s’ensuit (par récurrence) que la suite (un)nen

est bien a valeurs strlctement pos1t1ve, bien définie, et croissante.

D’apres le théoreme de la limite monotone, on sait donc que (un)nen tend soit vers une limite finie,

soit vers +oo.

Supposons par l'absurde que (un)nen converge. On peut trouver { € R tel que u,, —— (. Le

théoréme de la limite monotone entraine méme { >

1
Par continuité de x — x + — ent, la limite ¢ doit vérifier { = { +
X

contradiction souhaitée.

On a donc montré u, —— +oo0.
n—-+oo

n—+oo
Uy = 1.

1
, ce qui entraine - = 0, la

@2 2



Autocorrection M.
On commence par étudier les fonctions

JR— R

R— R
N x o x + X2

et g:f_idR:{x»—)xz

Notamment, on observe que g s’annule en 0 mais qu’elle est strictement positive sur R*.

X |—oo -1 =1/2 0 400
f/ - 0 +

+00 +00
f

—1/4
g + 0 +
1 1 1 1 . .
On observe que le segment I = —5 0| est stable sous f, car f —5)="2 > —5 qu’il contient ug

et que la fonction f y est croissante.

. 1
La suite (un), ¢y est donc a valeurs dans I et monotone. Comme u = —— > —5 =g, elle est méme

I

croissante. Comme elle est a valeurs dans le segment I, elle est bornée.

Le théoréme de la limite monotone entraine qu’elle converge : on peut ainsi trouver { € I tel que

u, — L.
n—+oo

Par continuité de f, cette limite doit vérifier f(£) = {. On a donc { = 0, car c’est 'unique point fixe de
f sur R (c’est-a-dire 'unique zéro de g).

In fine, on a montré u, —— 0.
n—-+oo



