
Lycée Henri-IV (PCSI) TD 13 (indications)

Suites

Exercice 7.
Pour la deuxième question, on pourra commencer par trouver une suite particulière vérifiant la rela-
tion.

Exercice 8.
On pourra considérer une suite récurrente définie par u0 ∈ R+ et ∀n ∈ N, un+1 = f(un).

Exercice 9.
Pour la deuxième question, une fois que l’on aura identifié une suite (vn)n∈N très proche de (⌊αn⌋)n∈N
vérifiant une certaine relation de récurrence d’ordre 2 à coefficients entiers, on pourra chercher à
comprendre pourquoi il est beaucoup plus facile de calculer ce que Python appellerait vn%1000 que
vn lui-même, pour de très grandes valeurs de n.

Exercice 19.
L’exercice a l’air plus difficile qu’il ne l’est : une application du théorème des gendarmes conclut vite.

Exercice 21.
Moralement, cet exercice devrait être facile : quand un est petit, un

n est encore plus petit, et de loin.
Mais il faut réussir à concrétiser cette remarque.

Exercice 24.
Pour la deuxième question, on procèdera par l’absurde et on essayera de trouver un entier n ∈ N∗ tel
que l’on puisse facilement écrire e, un et vn comme trois fractions avec le même dénominateur.

Exercice 26.
Étudier les suites (S2n)n∈N et (S2n+1)n∈N.

Exercice 29.
Pour la deuxième question, on pourra utiliser le DL1(0) de h 7→ ln(1+ h).

Exercice 30.
S’inspirer de la preuve du théorème de Cesàro.

Exercice 34.
On pourra introduire la suite (vn)n∈N = (max(un, un+1))n∈N.

Exercice 38.
Dans la première question, on pourra penser à faire la division euclidienne de m par n.

Exercice 42.
On pourra commencer par montrer que si (|qn|)n∈N ne tend pas vers +∞, alors il existe une extrac-
trice θ telle que

(
qθ(n)

)
n∈N soit une suite constante (pour cela, on pourra commencer par construire –

par récurrence – une sous-suite bornée).
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Exercice 46.
Exprimer zn sous forme algébrique.

Exercice 48.
Pour la première question, on pourra utiliser les formules d’addition pour exprimer le terme général
de la suite (un)n∈N à l’aide de deux termes successifs de la suite (vn)n∈N, et réciproquement.

Exercice 49.
On pourra développer le produit pour les petites valeurs de n, afin de démontrer par récurrence que
le terme général de la suite admet une autre forme, plus facilement exploitable.

Exercice 52.
On pourra penser à l’encadrement grossier, et au logarithme.

Exercice 65.
On reviendra à une traduction, avec des ε, de l’hypothèse asymptotique.

Exercice 75.
Dans la deuxième question, on pourra calculer la fonction fn+1 − fn.

Dans la troisième, on pourra commencer par montrer l’existence de ℓ ∈ R+ telle que un −−−−−→
n→+∞ ℓ.

Autocorrection

Autocorrection A.
Voilà les solutions.

Pour les cinq premières questions, on est dans le cadre des théorèmes du cours sur les suites véri-
fiant des relations de récurrence simple. Pour les quatre dernières, le plus facile est de calculer les
premières valeurs, en déduire une conjecture, puis démontrer cette dernière par récurrence (mais ce
n’est pas la seule possibilité).

(i) ∀k ∈ N∗, uk = −
7

2
(−2)k (suite géométrique) ;

(ii) ∀n ∈ N∗, un =
6

2n
(suite géométrique) ;

(iii) ∀p ∈ N, up = 10+ 3p (suite arithmétique) ;

(iv) ∀n ∈ N, 6−
5

3n
(suite arithmético-géométrique) ;

(v) ∀i ∈ N, ui =
1

3 · 4i
−

1

3
(suite arithmético-géométrique) ;

(vi) ∀n ∈ N, un =

{
2 si n = 0

−2 si n > 0 ;

(vii) ∀n ∈ N, un =
n(n+ 1)

2
;

(viii) ∀n ∈ N∗, un =
1

n
;

(ix) ∀n ∈ N, un = 22
n−1.
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Autocorrection B.

(i) Le polynôme caractéristique est X2 − 2X − 3 dont les racines sont (après calcul) −1 et 3. On en
déduit qu’on peut trouver deux nombres réels R et S tels que ∀n ∈ N, un = R 3n + S (−1)n.

En identifiant les premiers termes, on obtient le système
{

R + S= 1

3R− S= 1
, dont l’unique racine est

(après calcul) (R, S) = (1/2, 1/2). On en déduit que

∀n ∈ N, un =
3n + (−1)n

2
.

(ii) Le polynôme caractéristique est X2 − 4X + 4, dont la racine (double) est 2. On en déduit qu’on
peut trouver deux nombres réels A et B tels que ∀n ∈ N, un = (A + Bn) 2n.

En identifiant les premiers termes, on obtient le système
{

A = 1

2A+ 2B= 6
, dont l’unique racine est

(après calcul) (R, S) = (1, 2). On en déduit que

∀n ∈ N, un = (2n+ 1)2n.

(iii) Il s’agit de la suite nulle (par une récurrence double immédiate, ou par la formulation matri-
cielle).

(iv) Le polynôme caractéristique X2 − 2X + 2 a pour racines 1 ± i, que l’on peut mettre sous forme
exponentielle : 1 + i =

√
2eiπ/4 et 1 − i =

√
2e−iπ/4. On sait alors qu’on peut trouver deux

nombres réels U et V tels que

∀n ∈ N, un =
√
2
(

U cos
(
n
π

4

)
+ V sin

(
n
π

4

))
.

En identifiant les premiers termes, on obtient le système
{

U = 2

U+V= 1
, dont l’unique racine est

(U,V) = (2,−1). On en déduit que

∀n ∈ N, un =
√
2
n
(
2 cos

(
n
π

4

)
− sin

(
n
π

4

))
.

Pour les trois dernières questions, on ne donne que les solutions brutes.

(v) ∀k ∈ N, uk = 2− k.

(vi) ∀n ∈ N, un = −
1

3
(−1)n +

4

3 · 2n
.

(vii) ∀m ∈ N, um =

(
1

2
+

3

2
√
13

)(
1+

√
13

2

)n

+

(
1

2
−

3

2
√
13

)(
1−

√
13

2

)n

.

Autocorrection C.

(i) La suite (cosn)n∈N est bornée et
1

n+ 1
−−−−−→
n→+∞ 0, donc

cosn
n+ 1

−−−−−→
n→+∞ 0.

(ii) Soit n ∈ N∗. On a

n+ (−1)n

n2 + 1
=

n

n2

1+ (−1)n/n

1+ 1/n2
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=
1

n

1+ (−1)n/n

1+ 1/n2
.

On a (−1)n/n −−−−−→
n→+∞ 0 (produit d’une suite bornée et d’une suite tendant vers 0). On en déduit

que 1 + (−1)n/n −−−−−→
n→+∞ 1. Comme 1 + 1/n2 −−−−−→

n→+∞ 1, on en déduit
1+ (−1)n/n

1+ 1/n2
−−−−−→
n→+∞ 1,

puis, comme
1

n
−−−−−→
n→+∞ 0, on a

n+ (−1)n

n2 + 1
−−−−−→
n→+∞ 0.

(iii) Soit n ⩾ 1. On a
(−1)n + n

(−1)n + 2
⩾

n− 1

3
,

cette dernière quantité étant le terme général d’une suite tendant vers +∞, on a, par minoration,

(−1)n + n

(−1)n + 2
−−−−−→
n→+∞ +∞.

(iv) Soit n ∈ N∗. On a

en + n2

n4 + 1
=

en

n4

1+ n2/en

1+ 1/n4
.

Par croissance comparée, on a n2/en −−−−−→
n→+∞ 0. Comme par ailleurs 1 + 1/n4 −−−−−→

n→+∞ 1, on a

1+ n2/en

1+ 1/n4
−−−−−→
n→+∞ 1.

Toujours par croissance comparée, on a
en

n4
−−−−−→
n→+∞ +∞, donc

en + n2

n4 + 1
−−−−−→
n→+∞ +∞.

(v) Soit n ⩾ 3. On a
lnn+ 1

n+ 4
=

lnn

n

1+ 1/ lnn

1+ 4/n
. Comme le numérateur et le dénominateur de la

deuxième fraction tendent vers 1, on a
1+ 1/ lnn

1+ 4/n
−−−−−→
n→+∞ 1.

Par ailleurs, par croissance comparée,
lnn

n
−−−−−→
n→+∞ 0, donc

lnn+ 1

n+ 4
−−−−−→
n→+∞ 0.

(vi) Soit n ∈ N. On a

3n + (−2)n

3n − (−2)n
=

3n

3n
1+ (−2/3)n

1− (−2/3)n

=
1+ (−2/3)n

1− (−2/3)n
.

On a 1±
(
−
2

3

)n

−−−−−→
n→+∞ 1, donc

3n + (−2)n

3n − (−2)n
−−−−−→
n→+∞ 1.
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(vii) Soit n ∈ N∗. On a

√
n+ 1−

√
n− 1 =

√
n
[√

1+ 1/n−
√
1− 1/n

]
=

√
n

(√
1+ 1/n−

√
1− 1/n

)(√
1+ 1/n+

√
1− 1/n

)
(√

1+ 1/n+
√
1− 1/n

)
=

√
n

(1+ 1/n) − (1− 1/n)(√
1+ 1/n+

√
1− 1/n

)
=

√
n

2/n√
1+ 1/n+

√
1− 1/n

=
1√
n

2√
1+ 1/n+

√
1− 1/n

.

Le numérateur et le dénominateur de la deuxième fraction tendent tous deux vers 2, donc ladite

fraction tend vers 1. Comme
1√
n

−−−−−→
n→+∞ 0, on en déduit

√
n+ 1−

√
n− 1 −−−−−→

n→+∞ 0.

(viii) Soit n ∈ N∗. On a√
n2 + n−

√
n2 − n =

√
n2
[√

1+ 1/n−
√
1− 1/n

]
= n

2/n√
1+ 1/n+

√
1− 1/n

(calcul précédent)

=
2√

1+ 1/n+
√

1− 1/n

Le numérateur et le dénominateur de la fraction tendent tous deux vers 2, donc√
n2 + n−

√
n2 − n −−−−−→

n→+∞ 1.

(ix) Soit n ∈ N∗. On a

⌊√
n
⌋

n
⩽

√
n

n
=

1√
n

.

Comme
1√
n

−−−−−→
n→+∞ 0, on en déduit, par minoration, que

⌊√
n
⌋

n
−−−−−→
n→+∞ 0.

(x) Soit n ⩾ 2. On a

n!

nn
=

1× 2× 3× · · · × (n− 1)× n

n× n× n× · · · × n× n

=
1

n
× 2

n︸︷︷︸
⩽1

× 3

n︸︷︷︸
⩽1

× · · · × n− 1

n︸ ︷︷ ︸
⩽1

× n

n︸︷︷︸
=1

⩽
1

n
.

Par majoration, on a donc
n!

nn
−−−−−→
n→+∞ 0.
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Autocorrection D.

1. On va montrer que la somme d’une suite convergente et d’une suite divergente est divergente.
Ajouté aux résultat du cours selon lequel la somme de deux suites convergentes est conver-
gente, cela permet de remplir la « table d’addition » suivante.

+ convergente divergente
convergente convergente divergente
divergente divergente ?

Soit (cn)n∈N et (dn)n∈N deux suites convergente et divergente, respectivement. Montrons que
(cn + dn)n∈N diverge.

Supposons au contraire, par l’absurde, que (cn + dn)n∈N converge.

L’écriture (dn)n∈N = (cn + dn)n∈N − (cn)n∈N exprime alors (dn)n∈N comme différence de deux
suites convergentes, ce qui montre qu’elle converge, et constitue une contradiction.

En revanche, le «? » ne peut pas être rendu plus précis : il peut arriver que la somme de deux
suites divergentes diverge (comme par exemple (2n)n∈N = (n)n∈N + (n)n∈N) mais aussi qu’elle
converge (comme par exemple (0)n∈N = (n)n∈N + (−n)n∈N).

2. Pour le produit, le cours affirme que le produit de deux suites convergentes converge, ce qui
donne la « table de multiplication » suivante.

× convergente divergente
convergente convergente ?
divergente ? ?

On ne peut rien dire de plus : le produit d’une suite convergente et d’une suite divergente

peut aussi bien converger (par exemple
(
1

n

)
n∈N∗

=

(
1

n2

)
n∈N∗

× (n)n∈N∗) que diverger (par

exemple (n)n∈N∗ =

(
1

n

)
n∈N∗

×
(
n2
)
n∈N∗

) et, de la même façon, le produit de deux suites

divergentes peut converger (par exemple (1)n∈N = ((−1)n)n∈N × ((−1)n)n∈N) ou diverger (par
exemple (n2)n∈N = (n)n∈N × (n)n∈N).

Autocorrection E.
Il est possible de faire des démonstrations proches de celles des théorèmes « d’opérations » du cours,
et c’est d’ailleurs un bon entraînement, mais on peut directement utiliser ces théorèmes.

En effet, si un −−−−−→
n→+∞ ℓ1 et vn −−−−−→

n→+∞ ℓ2, alors

min(un, vn) =
un + vn − |un − vn|

2
−−−−−→
n→+∞ ℓ1 + ℓ2 − |ℓ1 − ℓ2|

2
= min(ℓ1, ℓ2)

et max(un, vn) =
un + vn + |un − vn|

2
−−−−−→
n→+∞ ℓ1 + ℓ2 + |ℓ1 − ℓ2|

2
= max(ℓ1, ℓ2),

par opérations.

Autocorrection F.
Soit (un)n∈N une suite périodique non constante. Soit T ∈ N∗ tel que ∀n ∈ N, un+T = un.

Comme la suite (un)n∈N est non constante, on peut trouver deux indices n0 et n1 tels que un0
̸= un1

.

Par une récurrence immédiate, on montre alors que

∀k ∈ N, (un0+kT = un0
et un1+kT = un1

) .
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On définit alors les deux applications

φ0 :

{
N → N
k 7→ n0 + kT

et φ1 :

{
N → N
k 7→ n1 + kT,

qui sont clairement des extractrices. D’après ce qui précède, les sous-suites
(
uφ0(n)

)
n∈N et

(
uφ1(n)

)
n∈N

sont toutes les deux constantes, mais prennent des valeurs différentes.

La suite (un)n∈N admet alors deux sous-suites qui ne convergent pas vers la même limite. Comme
dans le cas de ((−1)n)n∈N traité en cours, cela implique qu’elle diverge.

Autocorrection G.

(i) un ∼
n→+∞ 1

2n
;

(ii) un ∼
n→+∞ 1

3n
;

(iii) un ∼
n→+∞ −

1

n
;

(iv) un = o
n→+∞(n) ;

(v) un = O
n→+∞(n) ;

(vi) un ∼
n→+∞ vn ;

(vii) un =
1

n3
+ o

n→+∞
(

1

n4

)
;

(viii) un = o
n→+∞

(
1

lnn

)
.

Autocorrection H.
De la plus forte à la plus faible :

▶ un = 1+ o
n→+∞

(
1

n

)
: (v) ;

▶ un = 1+ O
n→+∞

(
1

n

)
: (viii) ;

▶ un −−−−−→
n→+∞ 1 : (i), (ii), (iv), (vii) ;

▶ un = O
n→+∞ (1) : (ix), (x) ;

▶ un = o
n→+∞(n) : (vi) ;

▶ un = O
n→+∞(n) : (iii).

Autocorrection I.
L’inégalité de l’énoncé donne (grâce à l’hypothèse de positivité !)

∀n ∈ N, 1 ⩽
vn

un
⩽

wn

un
.

Comme
wn

un
−−−−−→
n→+∞ 1, le théorème des gendarmes donne

vn

un
−−−−−→
n→+∞ 1, donc un ∼

n→+∞ vn.
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Autocorrection J.
Il n’y a pas d’implication logique :

▶ les suites (n+ n2)n∈N et (n2)n∈N vérifient n+ n2 ∼
n→+∞ n2 mais pas n+ n2 = n2 + o

n→+∞(1) ;

▶ les suites
(
1

n

)
n∈N∗

et
(

1

n2

)
n∈N∗

vérifient
1

n
=

1

n2
+ o

n→+∞(1) mais pas
1

n
∼

n→+∞ 1

n2
.

Remarque. Ces suites ne sont pas définies sur N mais il est facile de contourner cette difficulté,
soit en les prolongeant de façon arbitraire à N, soit en les décalant, c’est-à-dire en considérant(

1

n+ 1

)
n∈N

, etc. On ignore ici cette subtilité.

Autocorrection K.

(i)
3n4 − 2n2 + 1

2n3 + 1
∼

n→+∞ 3

2
n ;

(ii)
lnn+ n+ 1

3n2 + 2n+ 1
∼

n→+∞ 1

3n
;

(iii) ln
(
1+

1

n2 + 1

)
∼

n→+∞ 1

n2
;

(iv) ln
(
n+ 1

n

)
∼

n→+∞ 1

n
;

(v) sin sin
π

n2
∼

n→+∞ π

n2
;

(vi)
n2 ln

(
1+ 1

n

)
tan π

n

∼
n→+∞ n2

π
;

(vii) ln(n+ 2) − ln(n+ 1) ∼
n→+∞ 1

n
;

(viii) (2n+ lnn2)e−(n+1) ∼
n→+∞ 2ne−(n+1) ;

(ix)
ln(n2 + 1)

n+ 1
∼

n→+∞ 2
lnn

n
;

(x)

√
n2 + n+ 1

3
√
n2 − n+ 1

∼
n→+∞ 3

√
n ;

(xi)
n3 −

√
n2 + 1

5(lnn)3 − 2n2
∼

n→+∞ −
n

2
;

(xii)
n! + en

2n + 3n
∼

n→+∞ n!

3n
;

(xiii)
1

n+ 1
−

1

n− 1
∼

n→+∞ −
2

n2
;

(xiv)
√
n+ 1−

√
n− 1 ∼

n→+∞ 1√
n

;

(xv)
√

ln(n+ 1) − ln(n− 1) ∼
n→+∞

√
2

n
.

Autocorrection L.
Quel que soit n ∈ N, on a

1

u2
n

⩾ 0, donc un+1 ⩾ un. Il s’ensuit (par récurrence) que la suite (un)n∈N

est bien à valeurs strictement positive, bien définie, et croissante.

D’après le théorème de la limite monotone, on sait donc que (un)n∈N tend soit vers une limite finie,
soit vers +∞.

Supposons par l’absurde que (un)n∈N converge. On peut trouver ℓ ∈ R tel que un −−−−−→
n→+∞ ℓ. Le

théorème de la limite monotone entraîne même ℓ ⩾ u0 = 1.

Par continuité de x 7→ x +
1

x2
en ℓ, la limite ℓ doit vérifier ℓ = ℓ +

1

ℓ2
, ce qui entraîne

1

ℓ2
= 0, la

contradiction souhaitée.

On a donc montré un −−−−−→
n→+∞ +∞.
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Autocorrection M.
On commence par étudier les fonctions

f :

{
R → R
x 7→ x+ x2

et g = f− idR :

{
R → R
x 7→ x2.

Notamment, on observe que g s’annule en 0 mais qu’elle est strictement positive sur R∗.

x −∞ −1 −1/2 0 +∞
f ′ − +0

f
0 0

+∞

−1/4

+∞

g ++ 0

On observe que le segment I =
[
−
1

2
, 0

]
est stable sous f, car f

(
−
1

2

)
= −

1

4
⩾ −

1

2
, qu’il contient u0

et que la fonction f y est croissante.

La suite (un)n∈N est donc à valeurs dans I et monotone. Comme u1 = −
1

4
⩾ −

1

2
= u0, elle est même

croissante. Comme elle est à valeurs dans le segment I, elle est bornée.

Le théorème de la limite monotone entraîne qu’elle converge : on peut ainsi trouver ℓ ∈ I tel que
un −−−−−→

n→+∞ ℓ.

Par continuité de f, cette limite doit vérifier f(ℓ) = ℓ. On a donc ℓ = 0, car c’est l’unique point fixe de
f sur R (c’est-à-dire l’unique zéro de g).

In fine, on a montré un −−−−−→
n→+∞ 0.
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