
Lycée Henri-IV (PCSI) TD 13

Suites

Généralités

Autocorrection A. ✓
Exprimer en fonction de n le terme général des suites (un)n⩾0 ou (un)n>0 suivantes.

(i) u1 = 7 et ∀k ∈ N∗, uk+1 = −2uk ;
(ii) u1 = 3 et ∀n ⩾ 2, 2un = un−1 ;

(iii) u0 = 10 et ∀p ∈ N, up+1 − up = 3 ;

(iv) u0 = 1 et ∀n ∈ N∗, un =
un−1

3
+ 4 ;

(v) u0 = 0 et ∀i ⩾ 0, 4ui+1 + 1 = ui ;

(vi) u0 = 2 et ∀n ∈ N, un+1 =
−1

2
u2
n ;

(vii) u0 = 0 et ∀n ∈ N∗, un = un−1 + n ;

(viii) u1 = 1 et ∀n ∈ N∗, un+1 =
un

un + 1
;

(ix) u0 = 1 et ∀n ∈ N, un+1 = 2u2
n.

Exercice 1. ✓
Étudier les variations de la suite (un)n⩾0 ou (un)n>0 définie par les expressions suivantes.

(i) ∀n ∈ N, un =

(
n

p

)
(pour un certain p ∈ N) ;

(ii) ∀n ∈ N∗, un =

n∑
k=1

1

k2
+

1

n
;

(iii) ∀n ∈ N, un =
n!

2n
;

(iv) ∀n ∈ N∗, un =

n∑
k=1

lnk− n lnn ;

(v) ∀n ∈ N∗, un =

n∏
k=1

2k

2k+ 1
;

(vi) u0 > 0 et ∀n ∈ N, un+1 =
3u2

n

1+ 4un
.

Exercice 2++.

1. Soit (un)n∈N une suite réelle non bornée et C > 0. Montrer que ∃p, q ∈ N : |up − uq| > C.
2. Soit (un)n∈N et (vn)n∈N deux suites réelles non bornées et C > 0. Montrer que

∃p, q ∈ N : |up − uq| > C et |vp − vq| > C.

3. Montrer que le résultat correspondant pour trois suites est faux.

Récurrences linéaires

Autocorrection B. ✓
Dans chacun des cas suivants, déterminer l’expression générale de la suite (un)n∈N définie par ses
premiers termes et une relation de récurrence.

(i) u0 = 1, u1 = 1, ∀n ∈ N, un+2 = 2un+1 + 3un.
(ii) u0 = 1, u1 = 6, ∀n ∈ N, un+2 = 4un+1 − 4un.

(iii) u0 = 0, u1 = 0, ∀n ∈ N, un+2 =
√
2un+1 +

2

3
un.

(iv) u0 = 2, u1 = 1, ∀n ∈ N, un+2 − 2un+1 + 2un = 0.
(v) u0 = 2, u1 = 1, ∀k ∈ N, uk+2 − 2uk+1 + uk = 0 ;

(vi) u0 = 1, u1 = 1, ∀n ∈ N, 2un+2 + un+1 − un = 0 ;
(vii) u0 = 1, u1 = 2, ∀m ∈ N∗, um+1 = um + 3um−1.
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Exercice 3. ✓
Soit (un)n∈N la suite réelle définie par u0 = 1 et ∀n ⩾ 0, un+1 = 2un + n.

1. Montrer qu’il existe une suite arithmétique (vn)n∈N vérifiant la même relation de récurrence que
la suite (un)n∈N.

2. En étudiant la suite (un − vn)n∈N, déterminer l’expression de un en fonction de n.

Exercice 4. ✓
Soit (un)n∈N une suite telle que : ∀n ∈ N, un+1 = 2un + 5n.

1. Pour tout n ∈ N, on pose vn = un/5
n. Montrer que (vn)n∈N est arithmético-géométrique ; en

déduire l’expression de son terme général.
2. En déduire l’expression du terme général de la suite (un)n∈N.

Exercice 5. ✓
Soient (an)n∈N et (bn)n∈N les deux suites réelles définies par{

a0= 2

b0 =−1
et ∀n ∈ N,

{
an+1= 3an+ bn

bn+1 = 2an+ 4bn.

1. Pour tout n ∈ N, on pose un = an + bn et vn = 2an − bn. Calculer les suites (un)n∈N et (vn)n∈N.
2. En déduire l’expression de an et bn en fonction de n.

Exercice 6.
On considère les deux suites (un)n∈N et (vn)n∈N définies par :{

u0= 1

v0 =−2
et ∀n ∈ N,

{
un+1= 2un− vn
vn+1 = un + 4vn.

1. Montrer que la suite (un + vn)n∈N est géométrique ; en déduire l’expression de son terme géné-
ral.

2. En déduire une relation de récurrence satisfaite par la suite (vn)n∈N.
3. Déterminer l’expression du terme général des suites (un)n∈N et (vn)n∈N.

Exercice 7. �✓

1. Déterminer toutes les suites réelles bornées (un)n∈N telles que

∀n ∈ N, un+2 + un+1 − 2un = 0.

2. Déterminer toutes les suites réelles bornées (vn)n∈N telles que

∀n ∈ N, vn+2 − 5vn+1 + 6vn = 12 (−1)n.

Exercice 8+. �
Trouver toutes les fonctions f : R+ → R+ telles que ∀x ∈ R+, f(f(x)) = 6x− f(x) et ∀x > 0, f(x) > 0.

2



Exercice 9++ (Nombres de Pisot-Vijayaraghavan). �

1. Soit α =
3+

√
17

2
.

(a) Montrer que la suite (⌊αn⌋)n∈N vérifie, à partir d’un certain rang, une relation de récur-
rence linéaire d’ordre 2 à coefficients entiers.

(b) En déduire que, pour tout n ∈ N∗, ⌊αn⌋ est de même parité que n.

2. Soit β = 3 +
√
5. Écrire un programme permettant de calculer rapidement les trois derniers

chiffres avant la virgule de βn, pour de très grandes valeurs de n. (Pour fixer les idées, disons
que les calculs devraient par exemple rester faisables pour l’ordinateur avec n ≈ 101 000 000).

3. Après avoir identifié la propriété des réels α et β utilisée dans les deux exercices précédents, en
inventer un analogue, mettant en jeu un troisième nombre réel γ bien choisi.

Convergence
Calculs et opérations

Autocorrection C. ✓
Étudier la convergence des suites (un)n dont les termes généraux sont les suivants.

(i)
cosn
n+ 1

;

(ii)
n+ (−1)n

n2 + 1
;

(iii)
(−1)n + n

(−1)n + 2
;

(iv)
en + n2

n4 + 1
;

(v)
lnn+ 1

n+ 4
;

(vi)
3n + (−2)n

3n − (−2)n
;

(vii)
√
n+ 1−

√
n− 1 ;

(viii)
√
n2 + n−

√
n2 − n ;

(ix)
⌊
√
n⌋
n

;

(x)
n!

nn
.

Autocorrection D. ✓

1. Peut-on déterminer la nature (convergente ou divergente) de la somme de deux suites si l’on
connaît la nature des deux suites?

On traitera tous les cas, en fournissant suivant les cas une preuve ou un contre-exemple.
2. Même question pour le produit.

Autocorrection E. ✓
Soit (un)n∈N et (vn)n∈N deux suites réelles convergentes.

Montrer que
(
min(un, vn)

)
n∈N et

(
max(un, vn)

)
n∈N convergent.

Exercice 10.
Soit x ∈ R. Que vaut lim

n→∞ lim
m→∞ cos(2πn!x)2m ?

Exercice 11.
Soit (un)n∈N une suite convergente. Que peut-on dire de la suite (⌊un⌋)n∈N ?
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Exercice 12. ✓
Soit ℓ ∈ R+ ∪ {+∞}. Construire deux suites (un)n∈N et (vn)n∈N tendant vers 1 et +∞, respectivement,
telles que uvn

n −−−−−→
n→+∞ ℓ.

Exercice 13. ✓
Soit (un)n∈N une suite réelle telle que un −−−−−→

n→+∞ +∞. Montrer qu’il existe une suite réelle (vn)n∈N

telle que
vn −−−−−→

n→+∞ 0 et unvn −−−−−→
n→+∞ +∞.

Autres théorèmes de convergence

Exercice 14 (Définition de ζ(2)). ✓

On pose, pour tout n ∈ N∗, Sn =

n∑
k=1

1

k2
.

1. Étudier la monotonie de (Sn)n∈N∗ .

2. Montrer que pour tout n ⩾ 2,
1

n2
⩽

1

n− 1
−

1

n
.

3. En déduire que (Sn)n∈N∗ est convergente.

Exercice 15.

On pose, pour tout n ∈ N∗, Sn =

n∑
k=0

1

3k
et Tn =

n∑
k=0

k

3k
.

1. Montrer que la suite (Sn)n∈N converge vers une limite que l’on précisera.

2. Montrer que pour tout n ∈ N∗, on a Tn+1 =
Tn + Sn

3
.

3. En déduire que (Tn)n∈N∗ est convergente et déterminer sa limite.

Exercice 16. ✓

Montrer que la suite de terme général
n∑

k=0

(
n

k

)−1

est convergente et préciser sa limite.

Exercice 17.

Soit p ∈ N. Déterminer la nature de la suite
(
1! + 2! + · · ·+ n!

(n+ p)!

)
n∈N

.

Exercice 18. ✓
Étudier la convergence des trois suites (un)n⩾1 dont les termes généraux sont les suivants.

(i)
n∑

k=1

n

n2 + k
; (ii)

1

n2

n∑
k=1

⌊kx⌋ ; (iii)
1

n!

n∑
k=1

k!.

Exercice 19. �
Soit (un)n∈N et (vn)n∈N à valeurs dans [0, 1] telles que un vn −−−−−→

n→+∞ 1. Qu’en dire?

Exercice 20+.

Soit (pn)n∈N ∈ [0, 1]N et (qn)n∈N =

(
pn

n−1∏
k=0

(1− pk)

)
n∈N

.

Montrer que qn −−−−−→
n→+∞ 0.
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Exercice 21+. �
Soit (un)n une suite réelle telle que un −−−−−→

n→+∞ 0. Montrer que un
n −−−−−→

n→+∞ 0.

Exercice 22+.
Soit (un)n∈N une suite réelle telle que

∀n ∈ N,∀k ∈ N∗, 0 ⩽ un ⩽
1

k
+

k

n
.

Montrer que un −−−−−→
n→+∞ 0.

Exercice 23+.

1. Soit (un)n∈N et (vn)n∈N deux suites réelles telles que

u2
n + v2n −−−−−→

n→+∞ 0.

Montrer que un −−−−−→
n→+∞ 0 et vn −−−−−→

n→+∞ 0.

2. Même question sous l’hypothèse

u2
n + unvn + v2n −−−−−→

n→+∞ 0.

Exercice 24+ (Irrationalité de e). �✓
On définit les suites

(un)n∈N∗ =

(
n∑

k=0

1

k!

)
n∈N∗

et (vn)n∈N∗ =

(
un +

1

nn!

)
n∈N∗

.

1. Montrer qu’il s’agit de deux suites adjacentes.
2. On admet que la limite de ces deux suites est e. En déduire que e est irrationnel.

Exercice 25.
Montrer que les suites (un)n∈N∗ et (vn)n∈N∗ définies ci-dessous par leurs termes généraux sont adja-
centes.

(i) un =

n∑
k=1

1

k+ n
et vn =

2n∑
k=n

1

k
;

(ii) un =

n∑
k=1

1√
k
− 2

√
n et vn =

n∑
k=1

1√
k
− 2

√
n+ 1

Exercice 26 (Critère spécial des séries alternées). �✓

Soit (un)n∈N une suite décroissante de limite nulle. Montrer que

(
n∑

k=0

(−1)kuk

)
n∈N

converge.

Exercice 27+.

Soit (un)n∈N∗ une suite réelle et (Cn)n∈N∗ =

(
1

n

n∑
k=1

uk

)
n∈N∗

.

1. Montrer que si un −−−−−→
n→+∞ +∞, alors Cn −−−−−→

n→+∞ +∞. La réciproque est-elle vraie?

2. Montrer que si (un)n est monotone et que (Cn)n converge, alors (un)n converge.
3. Montrer que si (un)n est bornée, alors (Cn)n est bornée. La réciproque est-elle vraie?
4. Montrer que si (un)n est croissante, alors (Cn)n est croissante. La réciproque est-elle vraie?
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Exercice 28.

Soit (un)n∈N une suite réelle telle que un −−−−−→
n→+∞ 0. Montrer

1

n2

n∑
k=1

kuk −−−−−→
n→+∞ 0.

Exercice 29. �
Soit (un)n∈N∗ une suite à valeurs strictement positives.

1. Montrer que s’il existe ℓ ∈ R telle que
un+1

un
−−−−−→
n→+∞ ℓ, alors n

√
un −−−−−→

n→+∞ ℓ.

2. En déduire lim
n→+∞ n

n
√
n!

et lim
n→+∞

(
2n

n

)1/n

.

Exercice 30+. �
Soit (un)n∈N∗ et (vn)n∈N∗ deux suites réelles et (wn)n∈N∗ la suite définie par

∀n ∈ N∗, wn =
1

n

n∑
k=1

ukvn+1−k.

Montrer que si (un)n∈N∗ et (vn)n∈N∗ convergent alors (wn)n∈N∗ converge vers le produit des limites.

Mélange

Exercice 31. ✓
Montrer que toute suite d’entiers naturels convergente est stationnaire.

Exercice 32.

Soit (un)n∈N une suite strictement croissante. Montrer que
⋃
n∈N

[un, un+1] =

[
u0, lim

n→+∞un

[
.

Exercice 33 (Critère de D’Alembert). ✓
Soit (un)n une suite à valeurs strictement positives et ℓ ∈ R telle que

un+1

un
−−−−−→
n→+∞ ℓ.

1. Montrer que si ℓ < 1, alors (un)n∈N converge vers 0.
2. Montrer que si ℓ > 1, alors (un)n∈N diverge vers +∞.
3. Montrer que l’on ne peut rien dire si ℓ = 1.

Exercice 34++. �

Soit (un)n∈N∗ une suite positive telle que ∀n ∈ N, un+2 ⩽
un + un+1

2
. Montrer qu’elle converge.

Exercice 35+. ✓
Soit (un)n∈N une suite réelle et E =

{
un

∣∣n ∈ N
}

.
1. On suppose un −−−−→

n→∞ +∞. Montrer que E admet un minimum.

2. On suppose que (un)n∈N converge. Montrer que E admet un extremum.

Exercice 36+. ✓
Soit u ∈ RN telle que un −−−−−→

n→+∞ 0. Montrer

sup
{∣∣uk

∣∣ ∣∣∣k ⩾ n
}
−−−−−→
n→+∞ 0,

en n’oubliant pas de vérifier que la borne supérieure est bien définie.
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Exercice 37+.
Soit (un)n∈N une suite d’entiers naturels deux à deux distincts. Montrer un −−−−−→

n→+∞ +∞.

Exercice 38+ (Lemme sous-additif de Fekete). �
Soit (un)n∈N∗ une suite positive sous-additive, c’est-à-dire telle que

∀n,m ∈ N∗, un+m ⩽ un + um.

1. Montrer que ∀n ∈ N∗, ∀δ > 0,∃N ∈ N : ∀m ⩾ N,
um

m
⩽

un

n
+ δ.

2. Montrer que
un

n
−−−−−→
n→+∞ inf

{uk

k

∣∣∣k ∈ N∗
}
.

Suites extraites

Autocorrection F. ✓
Montrer que toute suite périodique non constante diverge.

Exercice 39.
Soit (un)n∈N une suite convergente telle que

(
(−1)nun

)
n∈N converge également. Que peut-on dire?

Exercice 40. ✓
Soit (un)n∈N une suite réelle.

Montrer que si (u2n)n∈N, (u2n+1)n∈N et (u3n)n∈N convergent, (un)n∈N converge.

Exercice 41.
Soit (un)n∈N une suite réelle.

1. On suppose que (un)n∈N est croissante et admet une suite extraite convergente. Que peut-on
dire de (un)n∈N ?

2. On suppose que (un)n∈N est croissante et admet une suite extraite majorée. Que peut-on dire
de (un)n∈N ?

Exercice 42+. �
Soit (pn)n∈N ∈ NN et (qn)n∈N ∈ (N∗)N deux suites d’entiers telles que

pn

qn
−−−−→
n→∞ ℓ ̸∈ Q. Montrer que

|pn| −−−−→
n→∞ +∞ et |qn| −−−−→

n→∞ +∞.

Exercice 43++.

1. Soit W ⊆ R. Montrer que les trois propriétés suivantes sont équivalentes.

(i) Tout suite décroissante à valeurs dans W stationne.
(ii) Toute partie non vide de W possède un minimum.

(iii) Toute suite à valeurs dans W possède une sous-suite croissante.

Quand ces propriétés sont vraies, on dit que la partie W est bien ordonnée.
2. Soit A,B ⊆ R deux parties bien ordonnées. Montrer que la somme A+B =

{
a+ b

∣∣a ∈ A, b ∈ B
}

est bien ordonnée.
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Exercice 44 (Théorème de Bolzano-Weierstrass par le lemme des pics).
Soit (un)n∈N une suite réelle. On définit E =

{
n ∈ N

∣∣ ∀k > n,uk < un

}
.

1. Montrer que si E est infini, (un)n∈N possède une sous-suite décroissante.
2. Montrer que si E est fini, (un)n∈N possède une sous-suite croissante.
3. Déduire de ce qui précède une nouvelle preuve du théorème de Bolzano-Weierstrass.

Exercice 45++.
Soit (un)n∈N une suite réelle telle que un+1 − un −−−−−→

n→+∞ 0.

Montrer que l’ensemble des valeurs d’adhérence de (un)n∈N est un intervalle.

Suites à valeurs complexes

Exercice 46. �
Soit (zn)n∈N une suite complexe telle que pour tout n ∈ N, zn+1 = 3zn−z̄n. Déterminer une expression
explicite du terme général zn.

Exercice 47.
Soit (zn)n∈N une suite vérifiant

∀n ∈ N, zn+1 =
1

4
zn +

3

4
zn.

Étudier la convergence de (zn)n∈N et déterminer le cas échéant sa limite.

Exercice 48. �✓
Soit θ ∈ R \ πZ et (un)n∈N = (cosnθ)n∈N et (vn)n∈N = (sinnθ)n∈N.

1. Montrer que (un)n∈N converge si et seulement si (vn)n∈N converge.
2. En déduire que (un)n∈N et (vn)n∈N divergent.

Exercice 49+. �
Soit z ∈ C tel que |z| < 1.

Déterminer si la suite

(
n∏

k=0

(
1+ z2

k
))

n∈N∗

est convergente et, le cas échéant, déterminer sa limite.

Analyse asymptotique

Autocorrection G. ✓
Soit (un)n une suite réelle. Écrire les assertions suivantes sous des formes plus simples.

(i) un ∼
n→+∞ 1

2n
+

1

12n2
;

(ii) un ∼
n→+∞ n2 + 2n+ 3

3n3 − n
;

(iii) un ∼
n→+∞ n+ n2

lnn− n3
;

(iv) un = o
n→+∞(n) − o

n→+∞(n) ;

(v) un = o
n→+∞(n) − O

n→+∞(n) ;

(vi) un =
(
1+ o

n→+∞(1)
)
vn ;

(vii) un =

(
1+ o

n→+∞
(
1

n

))(
1

n3
+ o

n→+∞
(

1

n10

))
;

(viii) un = o
n→+∞

(
1

n2

)
+ o

n→+∞
(
1

n

)
− o

n→+∞
(

1

lnn

)
.
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Autocorrection H. ✓
Soit (un)n une suite réelle. Classer les assertions suivantes de la plus forte (c’est-à-dire la plus contrai-
gnante) à la plus faible. Il peut y avoir des ex-æquo.

(i) un −−−−−→
n→+∞ 1 ;

(ii) un = exp
(

o
n→+∞(1)

)
;

(iii) un = O
n→+∞(n) ;

(iv) un = 1+ o
n→+∞(1) ;

(v) un = 1+ o
n→+∞

(
1

n

)
;

(vi) un = o
n→+∞(n) ;

(vii) un ∼
n→+∞ 1 ;

(viii) un = 1+ O
n→+∞

(
1

n

)
;

(ix) un = O
n→+∞(1) ;

(x) un = 1+ O
n→+∞(1).

Autocorrection I. ✓
Soit (un)n∈N, (vn)n∈N et (wn)n∈N ∈ (R∗

+)
N telles que wn ∼

n→+∞ un et ∀n ∈ N, un ⩽ vn ⩽ wn.

Montrer que vn ∼
n→+∞ un.

Autocorrection J. ✓
Soit (un)n∈N et (vn)n∈N ∈ RN. Y a-t-il une implication entre un ∼

n→+∞ vn et un = vn + o
n→+∞(1)?

Autocorrection K. ✓
Donner un équivalent simple des suites dont les termes généraux sont les suivants.

(i)
3n4 − 2n2 + 1

2n3 + 1
;

(ii)
lnn+ n+ 1

3n2 + 2n+ 1
;

(iii) ln
(
1+

1

n2 + 1

)
;

(iv) ln
(
n+ 1

n

)
;

(v) sin sin
π

n2
;

(vi)
n2 ln

(
1+ 1

n

)
tan π

n

;

(vii) ln(n+ 2) − ln(n+ 1) ;

(viii) (2n+ lnn2)e−(n+1) ;

(ix)
ln(n2 + 1)

n+ 1
;

(x)

√
n2 + n+ 1

3
√
n2 − n+ 1

;

(xi)
n3 −

√
n2 + 1

5(lnn)3 − 2n2
;

(xii)
n! + en

2n + 3n
;

(xiii)
1

n+ 1
−

1

n− 1
;

(xiv)
√
n+ 1−

√
n− 1 ;

(xv)
√

ln(n+ 1) − ln(n− 1).

Exercice 50. ✓
Classer les suites par ordre de négligeabilité les suites dont les termes généraux sont les suivants.

(i)
1

n
,
1

n2
,

lnn

n
,

lnn

n2
,

1

lnn
,

1

n lnn
.

(ii) n,n2, n lnn,
√
n lnn,

n

lnn
,
n2

lnn
.

Exercice 51. ✓
Déterminer un équivalent des suites dont les termes généraux sont les suivants.

(i) 2
√
n−

√
n+ 1−

√
n− 1 ; (ii) n+1

√
n+ 1− n

√
n.

Exercice 52. �

Déterminer un équivalent de

 n2+n∏
k=n2+1

2k− 1

k


n∈N∗

.
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Exercice 53. ✓
Déterminer les limites des suites dont les termes généraux sont les suivants.

(i) n

√
ln
(
1+

1

n2 + 1

)
;

(ii)
(
1+ sin

1

n

)n

;

(iii)
(
n sin

1

n

)n2

;

(iv)
n
√
n+1

(n+ 1)
√
n

;

(v) n2
(
(n+ 1)1/n − n1/n

)
;

(vi)
(
3

n
√
2− 2

n
√
3
)n

.

Exercice 54. ✓

Pour n ∈ N∗, on définit un =

(
1+

1

n

)n

.

1. Montrer que (un)n∈N∗ converge et déterminer sa limite.
2. Montrer que (un)n∈N∗ est croissante à partir d’un certain rang, par exemple en étudiant le quo-

tient de deux termes successifs.

3. Montrer (en utilisant la théorie de la convexité) que x 7→ ln(1+ x)

x
est décroissante sur R∗

+ et en
déduire que (un)n∈N∗ est même croissante.

Exercice 55+.

Déterminer lim
n→+∞

(
cos

nπ

3n+ 1
+ sin

nπ

6n+ 1

)n

.

Exercice 56.

1. Montrer que toute suite équivalente à (2n)n∈N est strictement croissante à partir d’un certain
rang.

2. Construire une suite équivalente à (n)n∈N qui ne soit pas croissante à partir d’un certain rang.

Même question pour (n2)n∈N.

Exercice 57. ✓

Pour n ∈ N∗, on pose Sn =

n∑
k=1

1√
k

.

1. Justifier que pour tout n ∈ N∗, on a
1√

n+ 1
⩽ 2(

√
n+ 1−

√
n) ⩽

1√
n

.

2. En déduire la limite de (Sn)n∈N∗ , puis déterminer un équivalent simple de (Sn)n∈N∗ .

Exercice 58. ✓

Montrer que
n∑

k=0

k! ∼
n→+∞ n!.

Exercice 59.
Soit (un)n∈N et (vn)n∈N deux suites réelles divergeant vers +∞.

On suppose un = o
n→+∞(vn).

Montrer qu’il existe une suite (wn)n∈N telle que un = o
n→+∞(wn) et wn = o

n→+∞(vn).
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Exercice 60.
Montrer qu’il existe deux suites (un)n∈N et (vn)n∈N telles que un = O

n→+∞(vn) sans que vn = O
n→+∞(un)

ou un = o
n→+∞(vn).

Exercice 61+. ✓
Soit u, v ∈ RN deux suites divergeant vers +∞. Montrer que la condition

∀A > 0, un − Avn −−−−−→
n→+∞ +∞

équivaut à vn = o(un).

Exercice 62. ✓
Soit (un)n∈N et (vn)n∈N deux suites ne s’annulant pas à partir d’un certain rang.

Déterminer, en justifiant, si chacune des assertions suivantes est vraie ou fausse.

(i) Si un ∼
n→+∞ vn, alors eun ∼

n→+∞ evn .

(ii) eun ∼
n→+∞ evn si et seulement si un − vn = o

n→+∞(1)

(iii) Si un ∼
n→+∞ vn et un > 0 à partir d’un certain rang, alors ln(un) ∼

n→+∞ ln(vn).

(iv) Si un ∼
n→+∞ vn et un −−−−−→

n→+∞ +∞, alors ln(un) ∼
n→+∞ ln(vn).

Exercice 63. ✓

Soit u une suite décroissante telle que un + un+1 ∼
n→+∞ 1

n
. Déterminer un équivalent simple de u.

Exercice 64.
On note π la fonction de comptage des nombres premiers (c’est-à-dire que, pour tout x ∈ R, π(x) est
le nombre de nombres premiers ⩽ x – par exemple, π(

√
10) = 2) et (pn)n∈N∗ la suite des nombres

premiers.

1. On admet le théorème des nombres premiers : π(x) ∼
x→∞ x

ln x
.

Donner un équivalent de (pn)n∈N∗ .

2. On admet maintenant π(x) =
x

ln x
+

x

ln2 x
+ o

(
x

ln2 x

)
.

Donner un DA à trois termes de (pn)n∈N∗ .

Exercice 65+. �

Soit u ∈ RN une suite telle que un = o
n→+∞

(
1

n

)
. Montrer

2n∑
k=n+1

uk −−−−−→
n→+∞ 0.

Études de suites récurrentes et implicites
Suites récurrentes

Autocorrection L. ✓

Étudier la nature de la suite (un)n∈N définie par u0 = 1 et ∀n ∈ N, un+1 = un +
1

u2
n

.

Autocorrection M. ✓

Étudier la nature de la suite (un)n∈N définie par u0 = −
1

2
et ∀n ∈ N, un+1 = un + u2

n.
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Exercice 66. ✓

Étudier la nature de la suite (un)n∈N définie par u0 =
1

2
et ∀n ∈ N, un+1 =

u2
n + un

2
.

Exercice 67 (Méthode de Héron).

Soit a ∈ R∗
+. Soit (un)n∈N une suite définie par u0 > 0 et, pour tout n ∈ N, un+1 =

1

2

(
un +

a

un

)
.

1. Étudier la fonction f :

{
R∗
+ → R

x 7→ 1

2

(
x+

a

x

) . Montrer que pour tout x ⩾
√
a, on a f(x) ⩽ x.

2. En déduire que pour tout n ∈ N∗, un ⩾
√
a et que la suite (un)n∈N∗ est décroissante.

3. En déduire que la suite (un)n∈N converge et déterminer sa limite.

Exercice 68.
On considère les suites (un)n∈N vérifiant la relation de récurrence ∀n ∈ N, un+1 = e ln(un).

1. Étudier la nature de (un)n∈N dans le cas où u0 ⩾ e.
2. Que dire si u0 < e?

Exercice 69. ✓

Soit f :
{
]−∞, 2] → R

x 7→ √
2− x

.

On considère une suite (un)n∈N définie par u0 ∈ ]−∞, 2] et, pour tout n ∈ N, un+1 = f(un).

1. Pour quelles valeurs de u0 la suite (un)n∈N est-elle bien définie?
2. On suppose que u0 a une telle valeur.

Montrer que (un)n∈N est convergente et déterminer sa limite.

Exercice 70.
Étudier la nature de la suite (un)n∈N définie par u0 = 1 et ∀n ∈ N, un+1 = 1+

2

un
.

Exercice 71+.
Étudier la nature de la suite (un)n∈N∗ définie par

u1 = 1 et ∀n ∈ N∗, un+1 =
un

n
+ 2.

Couples de suites

Exercice 72 (Moyenne arithmético-géométrique). ✓
Soit a > b ∈ R∗

+. Soit (un)n∈N et (vn)n∈N deux suites définies par u0 = a, v0 = b et pour tout n ∈ N,

un+1 =
un + vn

2
et vn+1 =

√
unvn. Montrer que ces deux suites sont bien définies et qu’elles sont

adjacentes.

(La limite commune de ces deux suites est, par définition, la moyenne arithmético-géométrique des deux
nombres a et b.)

Exercice 73.
Soit x > 1. Soit (un)n∈N et (vn)n∈N deux suites définies par u0 = x, v0 = 1 et pour tout n ∈ N,

un+1 =
un + vn

2
et vn+1 =

2unvn

un + vn
. Montrer que (un)n∈N et (vn)n∈N sont bien définies, qu’elles sont

adjacentes et calculer leur limite commune.
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Suites implicites

Exercice 74. ✓

1. Montrer que pour tout n ∈ N∗ l’équation xn + xn−1 + · · · + x = 1 possède une unique solution
dans R+. On la note xn.

2. Montrer que pour tout n ∈ N∗, on a 1/2 ⩽ xn ⩽ 1.
3. Montrer que (xn)n∈N∗ est décroissante.
4. Montrer que (xn)n∈N∗ est convergente et déterminer sa limite.

Exercice 75. �

Pour tout n ∈ N∗, soit fn :

{
R → R
x 7→ x5 + nx− 1.

1. Montrer que pour tout n ∈ N∗, il existe un unique réel un tel que fn(un) = 0.
2. Montrer que la suite (un)n∈N∗ ainsi définie est décroissante.
3. Montrer que la suite (un)n∈N∗ converge, puis que sa limite est 0.

Asymptotique

Exercice 76. ✓
Soit u ∈ RN telle que u0 > 0 et ∀n ∈ N, un+1 = arctan(un).

1. Montrer que u est à valeurs > 0 et converge vers 0.

2. Montrer que un+1 − un ∼
n→∞ −

u3
n

3
, et obtenir un équivalent de u.

Exercice 77. ✓
Soit u une suite vérifiant u0 > 0 et ∀n ∈ N, un+1 = ln(1+ un). En déterminer un équivalent.

Exercice 78+. Mines

On définit la suite x ∈ RN par x0 > 1 et ∀n ∈ N, xn+1 = xn +
1

ln xn
. En déterminer un équivalent.

Exercice 79.

1. Soit P ∈ R[X] un polynôme unitaire, de degré 3, possédant trois racines distinctes a, b et c.
Exprimer les coefficients de P en fonction de a, b et c.

Pour tout n ∈ N, on note Pn = X3 − (n+ 2)X2 + (2n+ 1)X − 1 ∈ R[X].

2. Montrer que, pour n assez grand, Pn possède trois racines an, bn et cn vérifiant

0 < an < 1 < bn < 3 <
2n+ 1

3
< cn.

3. Déterminer des équivalents simples des suites a, b et c ainsi définies.

Exercice 80. ✓
Pour tout n ∈ N∗, soit fn : x 7→ x5 + nx− 1.

1. Montrer que pour tout n ∈ N∗, il existe un unique réel un tel que fn(un) = 0, et que un ∈
[
0,

1

n

]
.

2. Montrer que un ∼
n→∞ 1

n
.

3. Donner un équivalent simple de
(
1

n
− un

)
n∈N∗

.
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Exercice 81. ✓

1. Montrer que, pour tout n ∈ N, il existe un unique nombre réel xn tel que xn + 3
√
xn = n.

2. Déterminer la limite, puis un équivalent simple de (xn)n∈N.
3+. Donner un développement asymptotique à trois termes de (xn)n∈N.

Exercice 82.

1. Montrer que pour tout n ∈ N∗, l’équation x + ln x = n possède une unique solution dans R∗
+,

que l’on notera un.
2. Déterminer la limite, puis un équivalent simple de la suite (xn)n∈N∗ .

3+. Obtenir le développement asymptotique un = n− lnn+
ln(n)
n

+ o
n→∞

(
ln(n)
n

)
.

Exercice 83+.

1. Montrer que, pour tout entier n ⩾ 3, il existe exactement deux solutions positives 0 < xn < yn

à l’équation tne−t = 1.
2. Donner la limite, puis un développement asymptotique à deux termes de la suite (yn)n⩾3.
3. Donner la limite, puis un développement asymptotique à deux termes de la suite (xn)n⩾3.

4++. Pousser un peu plus les développements asymptotiques précédents. Disons, quatre termes?

Exercice 84++.

1. Montrer qu’il existe un unique xn ∈
]
nπ−

π

2
, nπ+

π

2

[
tel que tan(xn) =

√
xn.

2. Déterminer la limite, puis un équivalent simple de (xn)n∈N.
3. Obtenir un développement asymptotique à quatre termes de (xn)n∈N.
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